
Structuring and securing know how
Optimization of manufacturing costs
Knowledge based product design
Planning and control of business processes

Copyright 2009, Mirakon AG (Switzerland)

Mirakon - Reference / Rev. 11

1 Introduction
1.1 What is the Mirakon-system
1.2 Your advantages with Mirakon
1.3 System Architecture
1.4 Installation

1.4.1 Single place installation
1.4.2 Client/Server installation

1.5 Program start and parameters
1.6 The user interface

1.6.1 Desktop
1.6.2 Menu bar
1.6.3 Function keys

2 The configuration of the system
2.1 Title
2.2 Project revision
2.3 Language
2.4 Architecture
2.5 Databases
2.6 Start Menu
2.7 User profiles
2.8 Users
2.9 Fonts
2.10 Units
2.11 Calendar
2.12 Events
2.13 Tekla Editor
2.14 Help Menu
2.15 Options

3 Data and data bases
3.1 Data organization
3.2 Knowledge base
3.3 Applications
3.4 Collections
3.5 Tables + Editor
3.6 Grafics + Editor
3.7 Dialog masks

3.7.1 Dialog fields
3.7.2 Question
3.7.3 Menu
3.7.4 Button
3.7.5 Selector
3.7.6 Textdisplay
3.7.7 Graficdisplay
3.7.8 Lister
3.7.9 Text editor
3.7.10 Structure editor
3.7.11 Grid
3.7.12 Table
3.7.13 Checkbox
3.7.14 Combobox
3.7.15 Radio buttons
3.7.16

4 The Tekla language

Mirakon - Referenz R11 / Index 2

5

5
5
6
9
9
9

10
10
10
12
12

13

13
13
13
13
13
14
14
14
15
16
16
16
16
17
17

18

18
19
19
20
20
21
24
24
24
24
25
25
25
25
25
25
26
26
26
26
26
27
27

28

4.1 Language elements
4.2 Types
4.3 Variables
4.4 Situations
4.5 Operators
4.6 Commands

4.6.1 Variable declaration
4.6.2 Value assignment
4.6.3 Reduction and/or increase of a value
4.6.4 Procedure call
4.6.5 Build command
4.6.6 Relation building
4.6.7 Data structure definition

4.7 Control structures
4.7.1 BEGIN-END command block
4.7.2 IF-structure
4.7.3 CASE-structure
4.7.4 LOOP-structure
4.7.5 WHILE-structure
4.7.6 TRAVEL-structure
4.7.7 TRAVELDB-structure
4.7.8 TRAVELF-structure
4.7.9 TRAVELR-structure
4.7.10 EXIT-Command
4.7.11 CONTINUE-Command
4.7.12 BREAK-Command

5 The Mirakon library
5.1
5.2 Program control in general

5.2.1 Search and find errors
5.2.2

5.3 Numbers and quantities
5.3.1 Algebra
5.3.2 Numbers order
5.3.3 Quantities
5.3.4 Dimensions and tolerances

5.4 Strings
5.4.1 Handling strings
5.4.2 Formatting strings
5.4.3 Conversion of types
5.4.4 Coding information in strings

5.5 Dates and time
5.6 Lists
5.7 Tables
5.8 Structures

5.8.1 Structures handling
5.8.2 Generate structures
5.8.3 Dialogue with structures

5.9 Relations
5.10 Processes

5.10.1 Grafic objects and editors

5.11 Documents
5.11.1 Listings
5.11.2 Grafic-Documents

Mirakon - Referenz R11 / Index 3

28
29
30
30
30
31
31
31
32
32
33
33
34

34
34
34
35
35
35
36
36
37
37
37
37
37

38

38
38
40
41

41
41
43
43
44

44
44
46
47
48

49
51
52
57
57
59
60

64
64
64

65
65
66

5.11.3 Flow text documents
5.11.4 Book-documents

5.12 Files and folders
5.13 Data bases

5.13.1 Handling of objects
5.13.2 Handling of data bases
5.13.3 Interactive access to data bases
5.13.4 Fast access to objects data
5.13.5

5.14 Dialog control
5.14.1 Cursor, keyboard, speaker
5.14.2 Showing informations
5.14.3 Handling of dialog fields
5.14.4 Handling of dialogue masks
5.14.5 Standard Dialogues
5.14.6 Programmable Dialogue
5.14.7 Selfrunning demos

5.15 Configuration
5.16 Printer
5.17 Interfaces

5.17.1 Import images
5.17.2 Files read and write
5.17.3 ODBC- interface
5.17.4 ODBC- interface
5.17.5 Excel-Interface
5.17.6 MS-Project-Interface
5.17.7 Find and scan files

5.18 Costs calculation

Mirakon - Referenz R11 / Index 4

76
77

78
79
79
84
86
91
93

100
100
101
102
103
105
107
110

111
113
113
113
114
116
118
119
122
126

127

1 Introduction

1.1 What is the Mirakon-system

The Mirakon-System is a Software kit that enables you to assemble business-
specific applications in a fast, flexible and integrated manner.

Without having to be a software developer you can build and link knowledge based
applications, such as cost estimation of new products, automatic configuration
of products or production planning, without redundancies and with interfaces to
other systems.

The Mirakon system is particularly suitable for complex applications that
require much technical specialized knowledge. You can store and structure
company specific know-how in a knowledge base in a way that it can be used
in different situations and applications.

Heterogeneous and dynamic data structures can be easily handled.
Complex products such as machines or fabrication plants can be modelled
in different structures (functional structure, constructional structure,
production process, cost structure...) and be stored as only one data
record in the Mirakon data base system.

One speciality of the Mirakon-System is the early cost estimation for
technical designers and product planners (earlier called the HKB program),
equally the Mirakon Sytem is frequently used as configuration system for
complex customer dependent products, production planning/simulation and
FMEA systems. However, you can also develop simpler applications such as
customer administration, financial plan, stock management, etc.

1.2 Your advantages with Mirakon

Flexibility
Standard software packages for pre-defined areas of application, even if parameterized,
offer many functions you do not need, and misses some which are important for you.
They are based on standard data structures and algorithms. Result: You must adapt
to the software when it should be the reverse! Mirakon however offers to you a language
with which you can build your own structures, dialogues, algorithms and output documents.
You control your applications and are independent of us (and that´s the way it should be).

Integration
Many heterogeneous applications with all possible interfaces provoke untransparent
situations and high costs. A new version of application X appears and the interfaces
with other applications stop working! The applications in Mirakon are embedded
in a common data base and the operating surface requires no interfaces. However it
allows output interfaces (ODBC, ASCII and others).

The treatment of complex structures
Relational data base systems are unsuitable, when it comes to model complex products
or production processes. The data of an object is distributed on many tables
and relations and it generates complicated data structures. Mirakon offers, from start,
a new approach: Data trees growing freely instead of rigid pre-defined tables.

The knowledge-based definition
It is better to store a method (knowledge) that is able to compute the drilling
time, depending on the tool, material and drilling parameters, than to store this
time (data) for thousands of pieces. If a new type of drilling tool is purchased,

Mirakon - Referenz R11 / 1.2 Your advantages with Mirakon 5

all this data becomes obsolete. The calculation method, however, can be extended
within few minutes, and all the data can be recalculated in seconds fast.
Mirakon links data with its generator knowledge in such a way, that this data
can be justified and updated at any time.

1.3 System Architecture

The Mirakon system consists of 4 components:

1. The Mirakon program
Our Mirakon program and reference (files MIRAKON.EXE and REFE.PIB);
The Mirakon program makes it possible to you, as an author, to store
knowledge and build applications, as well as to structure and manage
data. On the other hand, for you as user, Mirakon starts and runs
applications interpreting its comands and allowing interactive dialogs.

2. Your knowledge base
The knowledge base (KNO-file) contains knowledge and applications in the form of
tables, functions, procedures, documents, dialogues and data structures.
It is developed in a modular way and allows the plugging of knowledge
modules from different authors.

3. Your work base
The work base (DAT-files) contains the data which resulted from the work of all users:
Products, customers, schedules, orders, production orders, suppliers, etc.

4. Your configuration
The configuration (CNF file) defines your project and its options and links
together all the files involved (knowledge bases and work bases).

Two kinds of users must be differentiated:

- The authors (you, your coworkers or your advisor) develop applications,
define data structures and model existing knowledge in accordance with
your specifications and the needs of the users. Authors must not
necessarily be at the same time administrators.

- The users (your coworkers and yourself) run the applications and process the data
of your company (calculations, planing, configurations, offers, documentation, etc).

Mirakon - Referenz R11 / 1.3 System Architecture 6

......

......

......

Help

People

Program
MIRAKON.EXE

Applications-
execution

Knowledge base-
administration

User

 Data
Administrator

 System
Administrator

Knowledge
 Author

Work base
administration

Configuration
administration

Configuration (CNF-file)

Knowledge base (KNO-file)
Documents

Procedures

Functions

Tables

Dialog masks

Ressources

Work planning

Product design

Files, Units, Fonts, ...

User profiles
Passwords, ...

Definitions,
Settings,
Guidances:

Product 001

Relations

Order B07

Order A01

Supplier H18

Supplier D03

Work base
(DAT-file)

Product 002

Mirakon-files Client-files

Function Masters

Operation Masters

Component
Masters

Applications:

Cost calculation

Main Data: Nr, Name, ...
Product master + Parameters
Product specifications
Functional structure
Constructional structure
 Construction groups
 Components
 Connections
 Form elements
Work process (Operation plan)
Cost structure (Cost elements)
Graphics, Values, ...

Architecture of MIRAKON-System

Mirakon - Referenz R11 / 1.3 System Architecture 7

Server

MIRASERV.EXE

Client A

MIRAKON.EXE

MIRAKON.EXE

Client B

(Windows 9x,NT,2000,XP)

(Windows 9x,NT,2000,XP)

Data Bases

Config.

Network (LAN) / Internet (WAN)

(Mirakon technology)

(Windows NT, 2000, 2003)

COM/DCOM (Microsoft)
or Windows-Sockets

COM/DCOM
or Sockets

COM/DCOM
or Sockets

ev. Local
Data base

ev. Local
Data base

Architecture of MIRAKON-System in Client/Server-Ver sion:

Mirakon - Referenz R11 / 1.3 System Architecture 8

1.4 Installation

Requirements:

- Operating system: any Windows after NT4 (2000, XP, Vista, 7, ...);

- During installation of client/server version you should log in with administrator rights.

Software protection
We protect our software with a USB-Stick containing a small client specific LIC-file (license file)
which is unique and works only together with that USB-Device.

Following configurations are possible:

- single place installation (for single user)
- standard network installation (for few users and simple applications)
- client/server installation (for many concurrent users and complex applications)

1.4.1 Single place installation

Installation procedure:

1. Create a new folder (eg: c:\programs\Mirakon) and copy the Mirakon-files into it.

1.4.2 Client/Server installation

The server program, MIRASERV.EXE, runs continuously in the server machine.
The client program, MIRAKON.EXE, is stored in the server, but runs in the CPU of the Client PC.

The configuration file (xxx.CNF) contains the server's path (server ID
or IP address) and is called by the client, which then know's where the server is.
Data bases are stored in the server, and exclusively acceeded by the server program.

Two possible technologies can be used for the communication between client and server processes:
- the COM/DCOM technology from Microsoft (not longer supported by Microsoft)
- and the Windows-Sockets method (easier to implement)

Installation in Server:

1. Create a new folder (eg: c:\programs\Mirakon) and copy the Mirakon-files into it.
Be sure you only have one CNF-file in this folder.

2. Set the Configuration options:
- Run MIRAKON.EXE using a double click (the CNF file will be read).
- Choose: Configuration -> Edit, and set the architecture as follows:
 - architecture = Client/Server
 - server ID = server name or server IP address
 - Connect using = Windows Sockets or COM/DCOM
 - only for Sockets connection:
 port = port number (e.g.: 7575) port number should be configured
 with your network administrator and no standard TCP/IP Port number
 should be used (use numbers larger than 3000)
- Save the configuration (use F2 or the Save-Button)
- Close the Mirakon program

3A. Start MIRASERV.EXE with double click. This programm is to remain always running.
If you chose COM/DCOM: registration of COM-object in Windows Registry is made automatically.
To connect over the Internet, call MIRASERV with the parameter SRS=1 (eg: miraserv.exe SRS=1)

Mirakon - Referenz R11 / 1.4.2 Client/Server installation 9

3B.

Installation in each work station:

1. Create a shortcut in the Desktop (see chapter program start).
Example: F:\mirakon\MIRAKON.EXE F:\mirakon\client.cnf
For connection through the the Internet, you must indicate the RSID and PORT parameters.
Example1: MIRAKON.EXE RSID=192.190.20.14 PORT=7575
Example2: MIRAKON.EXE RSID=MYSERVER PORT=7575

2. only for COM/DCOM connection: start and terminate MIRAKON.EXE once, using the
created shortcut (registration of COM-object in Windows is made automatically)

1.5 Program start and parameters

The Mirakon system can be started in different manners:
- double clicking MIRAKON.EXE: the program starts and looks for the nearest configuration file;
- creating a shortcut on your Desktop calling MIRAKON.EXE and indicating the path of the
 configuration file as parameter (eg: c:\folder1\mirakon.exe f:\folder2\myconf.cnf)

In a Client/Server installation via Internet the call to MIRAKON.EXE
must be followed with the indication of the remote server IP address,
and without configuration path: Example: c:\mir\mirakon.exe RSID=192.168.22.12
The following program parameters and options can also be indicated:

- option /NOLOG - jumps over the user registration (login);
- option /NI - jumps over the execution of the initialization code;
- option /WINMIN - starts Mirakon with minimized window;
- APP=[Application ID] - starts the indicated application automatically ;
- P1, p2, p3 =... - passes up to 3 parameter to the starting application;
- UID=[user ID] - fills in automatically the first log in field
- UPW=[user password] - fills in automatically the second log in field
- RSID=[IP address] - provides the address for the remote server
- SRS=1 starts server as a remote server (only for Client/Server via Internet)
- PORT=[TCP/IP-Port Number] - indicates the port number for socket connection through Internet

Examples of program calls:
- c:\programs\mirakon\mirakon.exe myconf.cnf APP=HKB P1=120 P2=Peter /NOLOG
- \\server\mirakon\mirakon.exe \\server\mirakon\myconf

1.6 The user interface

1.6.1 Desktop

Down you see a typical application situation:

Mirakon - Referenz R11 / 1.6.1 Desktop 10

3

1

2

4

5 6

The Mirakon windows is divided into the following areas:

Menu bar [1]:
It contains general functions, such as Print, Export, etc.

Application frame [2]:
Total work surface that is available to an application. Contains one
or more dialogue windows. By clicking the button-X (right above, near "Save")
the application is closed.

Status area [3]:
Upper work surface in an Application frame, which contains application-
specific information and buttons, which are always accessible.

Dialogue mask [4]:
Dialogue window with its respective dialog fields. These dialogue masks
can be arranged by you. With escape Key or OK button the window will
close. With TAB key or with Enter key the cursor jumps to the next field,
the SHIFT-TAB key jumps the cursor to the previous field.

Frame register field [5]:
This field, at the bottom left hand corner, shows all Frames opened at
the moment. By clicking the register with the mouse, the user can jump
between opened documents or applications.

Message field [6]:
This field, down right, shows various messages during an application.

Mirakon - Referenz R11 / 1.6.1 Desktop 11

1.6.2 Menu bar

Menu options:
 Start Enables to start applications.

 Data Allows to edit knowledge bases and work bases.

 Configuration Allows to edit the configuration;

 Export Allows to export the selected item into the internal clipboard or into
an external file. Several items can be exported into the clipboard.

 Import Allows to import items from the internal clipboard or from an external file.

 Print Allows to print the selected object. Can also be called with F5.

 Tools Allows to execute comand lines, debug actions, read external documents,
execute external procedures, etc..

 Infos Informs the user about implementation data, memory consumption,
momentary values of variables and color numbers

 Help Shows several documents (manuals, references, instructions, etc).
Can also be called with F1.

 Log Off Terminates session and allows new log in with another user.

1.6.3 Function keys

The following keys and/or combinations of keys can accelerate your work:

F1 Help

F2 saves the changed objects

F5 prints the selected item

F11 starts and/or terminates the debugger

F12 shows the internal data structure of a structure element

Ctrl-S saves the changed objects (same as F2)

Ctrl-P prints the selected item (same as F5)

Ctrl-C copies the marked text into the Windows clipboard

Ctrl-V pastes the item from the Windows clipboard in the current cursor position

Ctrl-Ins exports the selected item into the Mirakon clipboard

Shift-Ins calls the Mirakon clipboard, to paste items in the current position

Mirakon - Referenz R11 / 1.6.3 Function keys 12

2 The configuration of the system

The configuration file (xxx.CNF) contains settings, options and parameters
concerning the users and ressources of one implementation.

2.1 Title

Determines the title (text and picture) and the user (company) of an implementation.

Title: Text that appear in the program window title.

Application: 4 lines that appear in the welcome window.

User: 3 lines that appear in the welcome window.

Image: Bitmap file (xxx.BMP) that appears in the welcome window.

Title mask: Dialogue mask file (xxx.MSK) that appears in the welcome window.

2.2 Project revision

Indication of the project revision number and date (optional).
These data appears into the welcome window of Mirakon.

2.3 Language

It sets the system language for all standard texts.
Following languages are supported: English, German, French and Portuguese

2.4 Architecture

It determines one of 2 versions: Standard or Client/Server.

For the Client/Server version the server-ID or -IP must be indicated.

To increase the speed, the data Packets can be compressed before they are
sent over the network, by enabling the option "Compress Client\Server packets".

2.5 Databases

List of the data bases of an installation.

The first data base must be the knowledge base (Id=KNO).
The second data base must be the work base (Id=DAT).
Further data bases can be freely added (archives, test data files, etc..).

The identificator allows the access on these data bases (with LOAD, SAVE, etc.).

The paths can be absolute (c:\mir\myproj.kno) or relative (myproj.kno).
A configuration with relative paths can be easily transported from one path to another.

Only for the Client/Server version: for each data base the access mode must be
indicated: Direct or Trough server.

The option "Secure file to CNF" allows data bases to be secured by a password
so that they can only be opened with its CNF or by knowing the password.
Thus a stolen data base, without the password, cannot be used.

Mirakon - Referenz R11 / 2.5 Databases 13

2.6 Start Menu

The start menu is modelled as a hierarchical structure of applications.

Into this structure you can insert groups, dividing lines and application calls.

An application call consists of:

 - ID: identification of the application as it is in the knowledge base.

 - Name: designation of the Application as it should appear in the start menu.

 - Image: Bitmap that appears before the designation in the start menu. You must
 indicate the Picture-ID from the resources in the module A000 of the knowledge base.

 - Register: 2 lines in the lower application register.

 - Parameters: declarations of variables for a specific call. They are
 set before the init procedure and can be queried during the initialization
 of the application with the Prefix APARS. Example: if APARS.demo: initdemo1;

 - Data bases selectors: define which Knowledge base is to be used (default is KNO)
 and which work base are the objects stored (default is DAT). Access to the defined
 data bases is made without the data base identification, e.g.: load(PROD,'001',prd),
 but the access to other data bases, if any, must be made using the data base
 identification as prefix,e.g.: load(ARC.PROD,'O001',prd).

2.7 User profiles

In order to describe users efficiently and without redundancies, you can define
user profiles and assign them to several users later.

With the Insert button you can add and identify a new user profile.
Below the profile you can insert permissions and prohibitions, and thus describe
the profile (see next chapter).

A permission determines which applications the user can start and with which access
restrictions. The Read Only option allows user to see and change objects without saving them.

A prohibition determines which applications a user cannot start.

Filters can be used to describe several applications, e.g.: PROD,G_,B7

2.8 Users

List of the users that can login.
With the Insert button you can add individual users or groups.

The following data define a user:

 - ID: user identification (1.Login-Question);

 - Password: User password (2.Login-Question).
 For safety reasons it is not visible and is doubly queried.

 - Name: User name as it should appear in documents;

 - Status: there are 3 user Status with the following meanings:

Mirakon - Referenz R11 / 2.8 Users 14

 A=user: has neither access to the data nor to the configuration;
 V=Author/Manager: has restricted access to the configuration;
 S=System administrator: can access everything;

 - Code: Tekla instructions executed immediately after the Login.
 Usage examples: to welcome, check the mailbox, show messages,etc.

 - Parameters: User specific variables that can be accessed during any application
 execution with the prefix UP. Example: if up.abt='E7': ...;

Under the user, you can insert user profiles, permissions and prohibitions.

2.9 Fonts

This chapter lists all Windows fonts to be used in Mirakon.
Each font gets a number that can be used when programming a document.

The first 3 fonts are already defined:
- Font 1 = Courier new: used for the input fields;
- Font 2 = Ms Sans Serif: used for the output of standard texts
- Font 3 = Arial: assures for transportability of certain documents.

In the configuration you can define 50 fonts.
These fonts apply to all applications into this configuration.

To keep fonts numbers stable, you can only delete the last font, and insert
new fonts only at the end.

The font name must be indicated accurately as it is written in Windows.
As comment you can, for example, indicate the purpose of usage (optional).

Mirakon - Referenz R11 / 2.9 Fonts 15

2.10 Units

The units table lists all needed units (time, length, money, ...).

NR NAME ABREV VAL1

100 Length

 101 Meter m 1

 102 Millimeter mm 0.001

 103 Centimeter cm 0.01

 151 Inch inch 0.0254

200 Time

 201 Minute min 1

300 Money

 301 Swiss Francs CHF 1

 302 US-Dollar US$ 1.38

 304 Euro EUR 1.53

Structure of the
units numbers: XX YY Unit (depending upon category):

1..50: reserved for Mirakon
51..99: freely definable

Category: 1=length 2=time 3=money...
1..50: reserved for Mirakon
51..99: freely definable

The column ABREV contains the abbreviation of the unit as it should be written in
expression, e.g.: d1:q=80 mm;

The column VAL1 contains the numerical value of the unit in reference to the
reference unit (unit number 1). In this way, quantities can be later easily converted.

2.11 Calendar

Here you can describe firm-specific holiday calendars,
to be assigned to individual resources during production planning.

2.12 Events

Under this chapter you can define jobs for the server to execute automatically,
in given time intervals. Example: Automatic Backups;

2.13 Tekla Editor

Following settings are available:

- whether syntax check is always performed when leaving procedure editor (recommended);

- color of system variables (examples: ENR, PI, ENAME)

- color of comments (after /)

- color of certain user variables that are indicated in the following field;

Mirakon - Referenz R11 / 2.13 Tekla Editor 16

2.14 Help Menu

The Help Menu is modelled as an hierarchical structure of documents. Thus, you can write
several company-specific documents, and make them available to your users.

Into this structure you can insert groups, dividing lines and document calls.

Help document is a file that can be provided in the following formats:

 - Mirakon format (PIB File): viewed by Mirakon Viewer, allows to search, and to
 print in different formats.

 - HTML Compiled Microsoft format (CHM File): showed by Microsoft Viewer;

 - Word format (DOC-file): showed by Microsoft Word;

 - Power Point format (PPT-file): showed by Microsoft Power Point;

Each entry of a document in the Help Menu needs:

 - Name: Designation of the document as it should appear on the Help Menu.

 - Image: Bitmap that appears before the designation on the Help menu.
 Use the Picture-ID from the resources in module A000 of the knowledge base.

 - File format: PIB, CHM, DOC or PPT;

 - File: File path + file name;

2.15 Options

Following options can be set:

- Event Protocol: when active, Mirakon writes following events to the file MIRAKON.LOG:
 Login, Logout, Application start, Save and deletion of objects.
 These events (maximum 5000) can be seen selecting the Menu Infos/event protocol.

- Enter jumps to the next field: If this option is active, Mirakon behaves as follows:
 after a Enter in a dialog field with assigned Tekla instructions, the cursor jumps to the
 next field, except if the author forbids it expressly with the instruction jumpfok:=0;
 If this option is not activated, the author must instruct the jump with JUMPF-comand.
 Dialog fields without Tekla comands are not affected by this option; for these, after
 Enter, the cursor always jumps to the next field.

- Path for saving objects and error report: here you define the path where the error
 reports are to be stored, as well as the objects saved during an error.

- Advanced error reporting: when active, Mirakon builds an extended error report
 containing internal commands and sequences, so that we can better find errors.
 Using this option if you can give us detailed information about an error, allowing us to
 correct it faster.

Mirakon - Referenz R11 / 2.15 Options 17

3 Data and data bases

3.1 Data organization

Elementary information, like the address of a customer, must be stored into
a file, so that it survives, after the computer has been switched off.

In order to discover this information among million of others, these files must
be internaly organized, exactly the same as books in a library.

The Mirakon system organizes the data file in 4 stages:
- data element (field, variable)
- data object (data record, record)
- data module (collection, application)
- data base (file)

Data elements are elementary information units (address of a customer) that must be
stored in an object.

Objects (also called records) are numbered and stored into a data base module.
Depending upon contents and purpose of the object, we differentiate between:

- work objects are the ones that are changed and processed by the user during an
 application. e.g.: Products, orders, customer, etc..

- knowledge objects contain knowledge and do not change during an application, but
 they are thereby used. e.g.: Material tables, Component Masters, procedures, etc..

A data base module is a system of related objects, arranged hierarchically in chapters.
It offers mechanisms for the numbering and relationing of its objects.

Depending upon contents and purpose we differentiate between 3 categories of modules:

- collection: contains work objects of the same kind (customers, articles, orders, etc..);

- Application: contains konowledge objects that define one application:
 Procedures, dialogue masks, tables, diagrams, etc.;

- Knowledge module: contains knowledge objects used by different applications like:
 material tables, documents, calculation methods (procedures), pictures, etc.
 The grouping of knowledge objects into a module can follow different criteria, such as:
 - objects who are thematically related, e.g.: Hydraulics
 - objects written by the same author, e.g.: Purchase processes

A data base module must be defined and stored in a data base.

A data base is a file. Depending upon contents and purpose we differentiate between 3
kinds of Mirakon data bases:

- work bases (DAT files): contain mostly collections of work objects;

- knowledge bases (KNO files): for knowledge objects (tables, procedures...)

- configuration (CNF file): Data base with a pre-defined structure, which contains
 information about the implementation (project).

Mirakon - Referenz R11 / 3.1 Data organization 18

.....

...

NR A03

NAME

ADR

TEL 071 7932220

Meier
...

Data base (e.g.: PPS.DAT)

Module (e.g: Clients)

Object (e.g: Client A03)

Blumenstr.7
Data
elements

3.2 Knowledge base

Base module A000
The standard knowledge base (KNO) must contain a basic module A000.
This module, contains central data and procedures, which can be accessed by every
other module, without the indication of the prefix A000.

The INIT procedure contains all global variables and definitions, which should be
constantly present in the system. These are initialized automatically when the first
application is called.

3.3 Applications

An application must contain an INIT procedure. This procedure defines all global
variables and definitions, which must be constantly present during the application.

The INIT procedure is executed after the start of the application. The INIT procedure
of an application X is also executed, if another application Y accesses objects of X.
This permits the declaration of variables that eventually are necessary. In this case
the INIT procedure of X, must protect the dialogue code with AT START: preventing
the start of application X in the middle of application Y.

Example : av1:r; / general-variable
av2:s; / general-variable

AT START: / dialogue started
openstat(STAT);
opentabs(0,0,0,'',MAIN);

The variables with the save attribute are supervised by the Save-system. If they are
changed during the course of an application, they will be saved by pressing the Save button.
The application author can enter an optional procedure name as the second parameter of the
save attribute. In that case that procedure will always be executed before the internal
save procedure.

Mirakon - Referenz R11 / 3.3 Applications 19

Example : pr:l&save(PROD, check_inputs); /product

3.4 Collections

Transactions
In the course of a project, new needs and developments arise. As a consequence
of it, changes in the data structure of the already existing objects in the work base
are needed. Such changes can be easily accomplished with transactions. A transaction
is implemented by describing a procedure for each object. The system loads each object
into the internal variable O:list, afterwards the transaction instructions are executed
(those that change the object O) and in the end the object O is saved.
Thus, values can be placed and/or changed, new data elements can be added or old ones
deleted or renamed, and relations changed.

3.5 Tables + Editor

The table editor is a Frame, in which tables are edited.

A table consists of lines and columns. A line consists of a line ID/Number
and several cells. A cell consists of one or several text lines.

A table is edited in two levels:

 1. Navigation level for moving from cell to cell, using the cursor keys or mouse.

 2. Input level to write within a cell.

Function buttons and keys in the navigation level:

- Edit button, Enter key, letter or number: It enters in the input level.
 The selected cell is opened to input data.

- + button or + key: If a column or a line is selected, the column width or line height
 increases by one character or line.

- - button or - key: If a column or a line is selected, the column width or line height
 decreases by one character or line.

- Insert button or INSERT key: If a column or a line is selected, a new column
 or line is added right from or above the cursor.
 If a cell is selected, it is zoomed and opened to input data (same as Zoom button).

- Delete button or DELETE key: The selected cell, column or line is deleted.
 If several lines are marked they are all deleted.

- Zoom button: If a column or a line is selected, it is made smaller or bigger,
 depending upon the actual state. If a cell is selected it is zoomed and opened
 to input data (same as the Insert button).

- Legend button: shows a text editor where you can write comments for the table.

- Doc button: allows you to write or draw a document for the selected cell.

- SHIFT + down-key: If a line is selected, it is marked or unmarked, depending on the
 actual state. Marked lines appear with inverted colors.

- Import and Export functions (Mirakon menu): The selected cells, and the selected or

Mirakon - Referenz R11 / 3.5 Tables + Editor 20

 marked lines from the table can be transferred to another table. If the cursor is
 in the top-left corner (NR field) the whole table will be transferred.

- With Mouse Right-click, other functions/shortcuts are available.
 For example, the option Format Cell, allows to format the selected cells, defining
 the background color, font style, etc...

Function buttons and keys in the input level:

- Enter key or Esc key: Cell is left and the editor gets back into the navigation level.

- Ctrl+Cursorkeys, Tab-key or SHIFT-Tab key: leaves the actual cell and enters
 the adjacent cell.

3.6 Grafics + Editor

The grafic editor is used to develop grafics and dialogue masks.

With the page selector the desired page can be selected in multi paged documents.

With the mouse, you can select one or more grafic elements:
- by simple Click (left mouse button) on individual grafic elements;
- or by draging a square around several grafic elements.
When a selected grafic element is clicked, it is deselected.

The Delete-key deletes all selected elements.

The buttons [+] and [-] increase and/or decrease the grafic zoom by 20%.

The Insert button offers the following functions:

- Line or L-key: for drawing a straight line or a Polyline.
 1. Select the beginning and ending points, with the mouse or arrow keys, by
 moving the cross and by short clicking the left mouse button or pressing
 the enter key. This step is repeated until the desired line path is drawn.
 2. Leave this function with the right mouse button or with the Esc key.

- Text or T-key: for writing a text of several lines.
 1. Write the desired text in the text editor, terminating with the Esc-key.
 2. Position the text box into the desired position with the mouse or arrow keys,
 and click the left mouse button or the enter key to terminate.

- Arc : it draws an elliptical arc with selectable ray and angle.
 1. input X and Y ray (mm), start and End angle (degree) and press enter or OK.
 2. Position the arc with the mouse or arrow keys.

- Surface : fills a line path with a color and/or pattern.
 1. Define the corners of the polygon, which will be filled, positioning the cross
 and pressing enter or left mouse button (as in the LINE function).
 2. Leave the function with the right mouse button or with the Esc key.

- Box : draws and fills a rectangle with a color and/or pattern.
 1. Define the upper left corner of the desired rectangle, positioning the cross and
 pressing the left mouse button or enter.
 2. Define the lower right corner of the desired rectangle, positioning the cross and
 pressing the left mouse button or enter.

- Symbol : draws a symbol from the symbol catalog.

Mirakon - Referenz R11 / 3.6 Grafics + Editor 21

 1. Select the desired catalog.
 2. Select the desired symbol.
 3. Put symbol into position.

- Dialog field : defines and places dialogue field into the dialogue mask
 1. Enter the dialogue field data and press ok button to confirm.
 2. Position the dialogue field with the mouse or arrow keys.

The Settings button offers the following functions:

- Zoom or Z-key: zooms a given rectangle. The zoom rectangle is entered as in
 the box function.

- View all or 0-key: it shows the entire grafic.

- Original view or 1-key: it shows the grafic in its originally formatted size.

- Text attributes : edits text attributes for the texts that will be inserted.

- Grafic attributes : edits attributes for the next grafic elements to be inserted.

- Layout : for changing size, color and position of the dialogue mask,
 as well as the margins for printing.

- Grid : sets the distance between the orienting points that appear in the
 grafic window.

- Resolution or R-key controls the positioning accuracy (snap).

- Initialization : contains instructions, that are executed before the mask opening.
 e.g.: Variable declarations, menu lists, etc.

- Opening : contains instructions, that are executed after the mask fields are drawn.
 e.g.: to change field status, etc.

- Finalization : contains instructions, that are execute before the mask is closed.
 e.g.: to check coherence, warnings, etc. Usually the system variables EXITOK,
 OKAYED, ESCAPED are used here.

- Layers : sets the active layers (the ones that are visible)

With the right mouse button, grafic elements can be selected and changed.

The following functions are available:

- Delete : it deletes all selected elements;

- Parameters : edits the contents of a text or a dialog field;

- Attributes : edits the appearance of the selected elements;

- Move : for moving the selected grafic elements; these can be moved to a
 new position with the mouse or arrow keys, and be fixed there with the left
 mouse button or the Enter key.

- Scale : increases or decreases the size of the selected elements, by entering

Mirakon - Referenz R11 / 3.6 Grafics + Editor 22

 the X-Y scaling factors and press the OK button.

- Rotate : rotates the selected elements around a desired angle, by entering
 the angle and press the ok button; Elements rotate counterclockwise.

- Copy : for copying the selected elements.
 1. Position with the mouse or arrow keys, and copy with the left mouse button.
 2. Leave the function with the right mouse button or with the Esc key.

- Group : joins several elements into a group.

- Separate : separates the individual elements of a group.

- Remodel/Change points : edits the position of the points of lines or surfaces.
 1. Select the desired corner and position it again.
 2. Leave the function with the right mouse button or with the Esc key.

- Remodel/Insert points : allows to insert new poins in lines or surfaces.
 1. Select the position for the new point and press the left mouse button.
 2. Leave the function with the right mouse button or with the Esc key.

- Remodel/Delete points : allows to delete poins of lines or surfaces.
 1. Select the point to delete and press the left mouse button.
 2. Leave the function with the right mouse button or with the Esc key.

- Mirrow : mirrors (copies) selected elements by entering the angle of the symetry axe.

- Order : changes the order in which graphic elements are drawn.
 - bring to back: the selected element is the last to be drawn.
 - bring to front: the selected element is the first to be drawn.

- Layer : it sets the layer in which the element is drawn (0=all layers).

- Identify : assigns an ID to the selected element (to use later with SETF,etc)

During the positioning, it is possible to enter the position numerically by
pressing the X-key.

Grafic files can be imported with the Import/from file function.
The following formats are supported:

 - bitmap pictures: BMP files;
 - designs: DXF files;
 - compressed pictures: JPG files;
 - icons: ICO files;

 Procedure:
 1. From the Mirakon menu: select Import/from file;
 2. Select the file;
 3. Position the picture frame with the mouse;
 4. Press left mouse button;

Bitmaps from other applications can be imported with the function
Import/from Windows clipboard.

 Procedure:
 1. In another application, copy the Bitmap into the Windows clipboard,

Mirakon - Referenz R11 / 3.6 Grafics + Editor 23

 normally with CTRL+C or CTRL+Ins;
 2. Activate Mirakon window and open the grafic editor;
 3. From the Mirakon menu: Select Import/from Windows clipboard;
 4. Position the picture frame with the mouse;
 5. Press left mouse button;

3.7 Dialog masks

3.7.1 Dialog fields

Each dialog field contains:

- ID: Identificator (alphanumeric). This determines the order of the field
 selection when the user uses the dialogue mask.

- variable ID: Name of the variable that is shown and changed by the field.

- Field dimensions: in Milimeter or text units.

- options: Selectability, colors, etc..

- Commands: to be executed when deselecting of the field: after Enter, UP,
 Down, tab, shift-Tab or Mouse; With the variable FCHANGED (integer), it can
 be queried whether the field variable was changed. After the execution of the
 commands the field will be left by the cursor, except if the system variable
 JUMPFOK is set to 0;

- Tip: Text that appears when the mouse cursor stops for a second over the field.

3.7.2 Question

A question is a dialog field, that allows the input of a text line.

Arrow keys: Left, Right, Home or End, move the cursor inside the field.

DEL-key: deletes the character under the cursor.

BACKSPACE-key: deletes the character left from the cursor.

Shift-F8: The entire dialog field content id deleted.

Mirakon controls each input and will not accept invalid characters.

The cursor jumps between several questions with the cursor keys UP, DOWN,
TAB, SHIFT SHIFT-TAB or with ENTER.

3.7.3 Menu

A menu is a dialog field, that allows the selection of an option from a
hierarchical list of options.

The functioning is similar to the Windows menus.

ENTER key: selects option. If an option contains suboptions (down arrow appears
 right from option), these are opened and/or closed (zoom).

HOME key: Sets the cursor to the beginning of the menu.

Mirakon - Referenz R11 / 3.7.3 Menu 24

END key: Sets the cursor to the end of the menu.

3.7.4 Button

The button is a dialog field, that allows to execute a set of commands.

Selectable buttons (e.g. OK button) must be selected and confirmed, in
order to let the commands be executed. Confirmation is made by clicking
the left mouse button or pressing the Enter key.

3.7.5 Selector

A selector is a dialog field that is used as a switch between few options.
Options are selected by clicking the edge buttons or pressing the
Left/Right cursor keys.

3.7.6 Textdisplay

A display shows a value (numeric or text) and does not allow inputs.

3.7.7 Graficdisplay

A display shows a picture and does not allow inputs.

3.7.8 Lister

The Lister field allows editing a list of heterogeneous elements.

Functioning mode:

INSERT-key: inserts an element in the list from an associated menu.

ENTER-key: allows the input of parameters for the selected element.

DEL-key: deletes the selected element from the list.

3.7.9 Text editor

A text editor allows the input of texts of several lines.

Functioning mode of the keys:

Enter: advances the cursor to a new line.

Backspace: joins 2 text lines if the cursor stands at the begining of the line.

CTRL-Y: deletes the line in which the cursor is located.

Shift-F6: marks/unmarks the line in which the cursor is located.

Shift-F7: inserts an empty line above the cursor.

Shift-F8: deletes the line in which the cursor is located. (same as CTRL Y)

Shift-F9: copies the marked lines to where the cursor stands.

Mirakon - Referenz R11 / 3.7.9 Text editor 25

3.7.10 Structure editor

The structure editor is a dialogue window, in which data structures are edited.

A structure consists of a hierarchy of elements.
An element is selected from a master table, parameterized and inserted into
the structure. Each element can contain sub-elements.

Functioning mode:

- INSERT-key or Insert button: inserts a choden element into the structure.

- ENTER-key or Double click: closes or opens the hierarchic level of the
 selected element.

- Plus-key (+): opens the hierarchic level of the selected element.

- Minus-key (-): closes the hierarchic level of the selected element.

- Star-key (*): opens all hierarchic levels under the selected element.

- P-key, or Parameter button or Right-Cursor-Key: allows the input of parameters
 for the selected element.

- DEL-key or Delete button: it deletes the selected element.

- Right mouse button: opens a context menu if the selected element has one assigned.

3.7.11 Grid

3.7.12 Table

3.7.13 Checkbox

3.7.14 Combobox

A menu is a dialog field, that allows the selection of an option from a
hierarchical list of options.

The functioning is similar to the Windows menus.

ENTER key: selects option. If an option contains suboptions (down arrow appears
 right from option), these are opened and/or closed (zoom).

HOME key: Sets the cursor to the beginning of the menu.

Mirakon - Referenz R11 / 3.7.14 Combobox 26

END key: Sets the cursor to the end of the menu.

3.7.15 Radio buttons

3.7.16

Mirakon - Referenz R11 / 3.7.16 27

4 The Tekla language

4.1 Language elements

The TEKLA language consists of following elements or terms:

 Variable: Is a logical storage location and possesses a name, a type and a value.
In order to allocate storage place for a variable, it must be declared.

 Type: During the program execution values are entered, computed and stored in
variables. These values can be of different natures (type): Numbers,
texts, etc.. The variable type specifies, which values can be stored and
which operations can be applied to it.

 Expression: A value expression is a formula, consisting of operands (constants and variables),
operators and function calls that return a value. The use of several parentheses
as in algebra is allowed.

 Command: A command is an instruction used to declare variables, calculate, change
or transport values, etc.

 Function: A function is a value generator. It is not a command but a part of an expression.
It consists however internally of commands that calculate the return value.

 Object: An object is a connected list of identified values that can be stored in
a data base as a whole (record).

The first three values are always:
- number (NR:string)
- designation (NAME:string)
- status (STAT:recstatus)

An object grows and shrinks with its use and must not have a pre-defined
data structure.

Depending upon the purpose, we can differentiate between:

- work objects: are changed and worked by the user during an
 application. E.G.: Products, orders, customers, etc..

- knowledge objects: contain information that does not change during
 an application. E.G.: material tables, component masters, procedures, etc..

 Table: An object, which contains a quantity of expressions, instructions and comments,
that are arranged in matrix form. A table cell can contain several text lines.

 Dialog mask: An object describing a window with dialogue fields and graphics.
When called, a dialogue takes place with the user.

 Data base: A file that contains a quantity of related objects. An Data base is organized
into modules for fast data access.
Depending upon purpose of the objects contained in it we differentiate between:
- knowledge bases: for knowledge objects (tables, procedures...)
- work bases: for work objects (clients, products, orders...)

Mirakon - Referenz R11 / 4.1 Language elements 28

 Module: A quantity of related objects inside one data base.
We differentiate between:

- knowledge module: contains knowledge objects hierarchically organized that
 are writen most by one author;

- application: it describes an application and contains: initialization,
 main menu, procedures, functions and dialogue masks;

- collection: contains work objects of the same kind, ordered by their numbers;

 Configuration: File with information about the project implementation: title, user,
paths of needed data bases, options, etc.

4.2 Types

There are elementary types and compound types.

The elementary types cannot be further partitioned.

The compound types can be divided into fields of elementary types.

Elementary types

b Byte = integer numbers between 0 and 255.

i Integer = integer numbers between -32000 and 32000.

a Address = 32-bit number.

c Currency = real number with exact roundness to 4 decimal places.
Important for financial accounting, because real numbers are not
always exactly rounded.

r Real = real numbers between -1E18 and +1E18.

s String = string with a maximum of 255 characters.

n Name = continuous character string that identifies one data element
(variable, table, structure element).

d Date = indication of time with year, month, day, hour, minutes
and seconds.

q Quantity = real number (value) + unit (name).

l List = list with variables of different types.

li List of integer = list with integer numbers.

lr List of reals = list with real values.

ls List of string = list with character strings (text).

ln List of name = list with names.

^... Pointer to... (examples: pos1:^e; pr2:^r; pl3:^l;)

Compound types

The type ELEMENT is the basic component for building data structures and
therefore is here mentioned.

Further compound types are described later with its respective topics.

e Element; consists of the following fields:
- ID:s; (Module\Table.Line Number).
- NAME:s; (designation).
- PARS:l; (parameters list).

Mirakon - Referenz R11 / 4.2 Types 29

- DATA:l; (further attributes: Quantity, resources...).
- SS:l; (substructure).

4.3 Variables

There are system variables defined by Mirakon and those that can be freely defined
by the application author.

Variables declared with the same name as the system variables overrun
the system variables. Therefore it is not recommended.
Relative to their life span the variables can be global or local.

Global variables are defined in the initialization of the modules (init procedure)
and live as long as the application.

Local variables are defined in procedures, dialogue masks and tables and live
only as long as the procedure, dialogue or table is active.

4.4 Situations

Situations are names with fixed meaning. These give the possibility to the
Tekla author to implement certain instructions only on certain situations.

Example: Actions that are assigned to a product-master (A-column), which are
not to be always implemented. With the AT instruction its possible to write
situation specific instructions.

4.5 Operators

Arithmetic operators (result in real or integer values):

+ addition

- subtraction

* multiplication

/ division

Boolean operators (result is 0 or 1):

= Equality

Inequality

in Containment (needs blank space before and afterwards!)
Example: if ID in ('A_','B_'):inf('found');

out Exclusion (needs blank before and afterwards!)
Example: if NR out (1,4,12):inf('ok');

< Smaller

> Bigger

<= Smaller or equal

>= Bigger or equal

not Denial

and AND connection
Example: if (A 20) and (b<350):inf('OK');

or OR connection

Mirakon - Referenz R11 / 4.5 Operators 30

String operators (return string values):

+ Addition
Example: title:s='Chapter '+nr; /nr is also a string

* Multiplication
Example: line:s=75 *'-';

~ Negation: for negative filters:
Example: loader(...,gf='~A _ '); / Filters all objects that do not begin with A

Name operators (the return value is a name):

[] Evaluation operator
Example: path:n=pr.bs.[i].ss.[id1];
/i:integer and id1:string

Pointer operators (the return value is in the type of the pointed variable):

^ De-references the pointer and returns the value of the pointed variable
Example: x1:r:=pr2^; (pr2 is a pointer of the type ^R)

Decision operator (for all types)

{ } Returns the value preceeded by the first fulfilled condition.
Syntax: {condition1:value1, condition2:Value2, other value};
Example: x:r={length>10:2.8, width>200:3.5, 5.7};

4.6 Commands

4.6.1 Variable declaration

The variable declaration allocates storage place for a variable.

Name

,

: : =

,

;Type ExpressionMeaning

Example : x:r:temperatur in degrees;
x,y:r=2; / results in x=2 y=2
x,y:r=2,5; / results in x=2 y=5
l1:li=(1,2,3);

4.6.2 Value assignment

The value assignment fills the storage location of a variable with a value.

Mirakon - Referenz R11 / 4.6.2 Value assignment 31

,

: =

,

;Name Expression

Example : s1:='ABC';
x,y:=6,x/2; /results in x=6 y=3

4.6.3 Reduction and/or increase of a value

Adds and/or subtracts a value (number or string) to a variable.

, ,

;
++

- -
Name Expression

Example : z--2.5;
x,y++a;
x,y++a,b;
s1++'ABC';

4.6.4 Procedure call

The procedure call transfers the parameters to the called procedure and
executes the commands contained there.

,

;()Procedure name Parameters

There are 2 kinds of parameters transfer:

1) value parameter: the procedure expects a value for internal calculations
 and decisions.

2) variable parameter: the procedure expects a variable to return a computed
 value. This value is thus exported. These parameters must be defined with
 the prefix VAR in the procedure header.

TEKLA offers also the possibility to define optional parameters. All optional
parameters must be defined with a / after all fixed parameters. In the procedure call,
optional parameters are passed indicating parameter name and = sign before its value.

Example : / Procedure declaration:

procedure sum(a,b:r; var result:r);
 /...
 end;

procedure calcd(d:d; /var year,mon,day:i);
 /...
 end;

Mirakon - Referenz R11 / 4.6.4 Procedure call 32

/ Procedure call:

x,y:r=35,0;
sum(x,20,y);

d1:d=now;
m,d:i;
calcd(d1,mon=m,day=t);

4.6.5 Build command

The build command inserts an element into a structure.

,

() ->

Position

:Master*

=: & ;

Value Description Parameters

Pointer Procedure Call

The inserted element is always an instance (particularization) of a master from a
masters table in the knowledge base.

The &-operator, at the end of the build command, enables calling related procedures

- &id=string : assigns an identifier to the inserted element.

- &nss : inserted element wont have a substructure

Example : TAB1.A1->pr.bs.1; /simplest construction instructi on

p1:^e;
2*A2(10,'A')->ss.0=:p1;
/p1 now points to the inserted element

MOD5\TEILE.A3:'Left shaft'(p.d,p.l+2)->p1^.ss.0;
/Shaft will be inserted in the substructure pointed by p1

BK.TEIL1->pr.bs.0&id='X1';

4.6.6 Relation building

The relation building command builds a relation between 2 or more data elements/variables.
The relation consists of commands to be executed when any of the related elements changes.
The related elements are indicated with @1, @2..., in the "variables" part of the command.

Mirakon - Referenz R11 / 4.6.6 Relation building 33

,

: ;REL Variables Command(s)

Example : rel p.n,pr.lg:@1:=@2;

rel p1,p2,p3:
 begin
 @1.x:=(@2.x+@3.x)/2;
 @1.y:=(@2.y+@3.y)/2;
 end;

4.6.7 Data structure definition

A data structure can be defined with the = sign:

Example : book=
 author:s;
 year:i;
 publisher:s;
 end;

/afterwards a structured variable can be defined

mybook:book;

4.7 Control structures

4.7.1 BEGIN-END command block

With BEGIN... END you can assign a group of commands to a condition
or a repetition loop.

BEGIN ; END ;Command(s)

Example : if a>b:
 begin
 i:=i+1;
 inf('ok');
 end;

4.7.2 IF-structure

Allows conditioned execution of commands.

IF : ELSECondition Command(s) Command(s)

Example : if a>b:

Mirakon - Referenz R11 / 4.7.2 IF-structure 34

 begin
 a++1;
 inf('ok');
 end;
else inf('error');

4.7.3 CASE-structure

Allows conditioned execution of commands depending upon several value sets
of a variable. This variable can be of the type Integer, Currency, Real,
Quantity, Date, String or Name.

:CASE Variable : END;Value(s) Command(s)

Example : t:s='A12';
case t:
 'A_': inf('ok');
 'B_,C_': inf('false');
 end;

4.7.4 LOOP-structure

Repeats a command block several times.

Variable = ..LOOP :Start value End value Command(s)

Example : t:s; n:i=10;
loop i=1..n:
 begin
 t:=si(i)+'. Line';
 drawr(2,-10-5*i,1,t,2);
 end;

4.7.5 WHILE-structure

Repeats a command block until a condition is fulfilled.

:WHILE Condition Command(s)

Example : while y>100:
 begin
 drawr(2,y,1,r,2);
 y:=y-5;
 end;

Mirakon - Referenz R11 / 4.7.5 WHILE-structure 35

4.7.6 TRAVEL-structure

Travels in a structure (from top to bottom) and executes the indicated
commands for each structure element. In order to allow you to access the
data of each element, TRAVEL activates each position before executing your commands.
Thus the system variables D, P, SS, ENR, EMOD, ENAME, EP, EH, PE refer allways
to the active element.

Optionally you may write:
- an element filter (string) as a second parameter
- options (characters) as a third parameter: B=backwards;
- conditions as a fourth parameter;

:TRAVEL , Filter , B ,Structure Condition(s) Command(s)

Example : travel pr.bs:
 begin
 writes(1,2,1,ep);
 writeq(0,14,1,d.q);
 writes(0,20,1,ename);
 end;

travel pr.ap,'D_,B_',B: writes(1,2,1,ename);

travel pr.ap,'D_,B_',,p.d>120: writes(1,2,1,ename);

4.7.7 TRAVELDB-structure

Travels through a work base module in alphabetical order and executes
the indicated commands for each object number. The respective object
number is contained in the system variable KEYI:string. This variable
KEYI is only valid within the TRAVELDB commands.

Optionally an object number filter can be indicated as the second
parameter (string) and an object variable (list) as the third parameter.

If this object variable is indicated, each object is loaded into it.

:, ,traveldb FilterModule Object variable Command(s)

Example 1: obj:l;
traveldb PROD:
 begin
 load(PROD,keyi,obj);
 writes(1,1,1,keyi+' '+obj.name);
 end;

Example 2: obj:l;
traveldb PROD,'_',obj:
 writes(1,1,1,obj.name);

Mirakon - Referenz R11 / 4.7.7 TRAVELDB-structure 36

4.7.8 TRAVELF-structure

Travels through a file byte for byte and executes the indicated commands
for each section. The sections are formed by the indication of a separator
in the variable TFS.
Options: L = separator is carriage return line feed.

:,TRAVELF OptionFile Nr. Command(s)

Example : f:i;
openf(f,'ABC.TXT');
travelf f,L: writes(1,1,1,tfs);
closef(f);

4.7.9 TRAVELR-structure

Travels through all relations of the element pointed by the pointer
variable and executes the indicated commands for each relation.
In order to access each individual relation, the system variables
RTYP, RREF, PRE1, PRE2 and RDATA are updated at each position.

:TRAVELR Pointer Command(s)

Example : p1:^e=^pr.bs.1;
travelr p1:
 begin
 if rtyp=3:continue;
 rdata.ncy:=4;
 end;

4.7.10 EXIT-Command

Forces the active procedure to be left.

4.7.11 CONTINUE-Command

Breaks the actual round in the active LOOP/WHILE/TRAVEL loop and
starts the next.
Example : travel pr.bs:

 begin
 if eh>2:continue;
 writes(1,20,1,ename);
 end;

4.7.12 BREAK-Command

Leaves the active LOOP/WHILE/TRAVEL.
Example : travel pr.bs:

 begin
 if ei>10:break;
 writes(1,20,1,ename);
 end;

Mirakon - Referenz R11 / 4.7.12 BREAK-Command 37

5 The Mirakon library

The Mirakon library contains variables, types, procedures and functions
that Mirakon already programmed and are ready to be called from your applications.

It contains also schemes for the solution of more complex problems.

A scheme is a system of functionally related language elements.

Example: The scheme for the modeling of structures is the EDITST and consists
of the variables ENR, PE, ENAME, etc., the situations I1, I2, etc., the handler
procedure, the master table for the structure elements and the appropriate
dialogue masks.

5.1

procedure getram(var total,avail:a);

total :

avail :

Example :
5.2 Program control in general

Variables and constants

uid n user id

uname s user name

us n user status

up l user parameters list

errormode i If 1: Calculation errors are not shown.

mirrev s Mirakon-Revision, e.g.: '10.128';

lang i Defined language (in the configuration):
1=English 2=German 3=French 4=Portuguese

Situations for program control

START After the start of an application

function EX (v:n):r;

Returns 1 if the variable V exists and 0 if it does not exist.

Example : if ex(pr.status)=0: inf('Status not found');

function TYPOF (v:n):s;

Returns the type of the variable V.

Example : x:r; t:s=typof(x); /returns t='R'

function SIZEOF (v:n):a;

Returns the memory consumption (in RAM) of the indicated variable V.

Example : x:r; t:a=sizeof(x);

Mirakon - Referenz R11 / 5.2 Program control in general 38

procedure SETBIT (bitnr,bitval:i; v:n);

Sets a bit value in a variable.

bitnr : bit position: 1 to 16

bitval : bit value: 0 or 1

v : variable to change; Must be of the Integer type

Example : a:i=0; setbit(3,1,a); /returns a=4

function BIT (bitnr:i; v:n):i;

Returns one bit value of a variable.

bitnr : bit position: 1 to 16

v : variable

Example : a:i=4; b:i=bit(3,a); /returns b=1

procedure CLOSEPROG;

Terminates the Mirakon program.

procedure CLOSEFRAME;

Terminates the current application and/or Frame.

procedure WAIT (n:i);

Waits N hundredth of seconds.

Example : wait(200); /waits 2 Seconds

procedure EXECCODE (var code:ls; /o:n);

Implements the instructions contained in the variable CODE.

code : List of instructions

o : Options: N: Errors are not shown

procedure EXECCOM (com:s; /o:n);

Implements the instructiosn indicated in the variable COM.

com : Instruction

o : Options: N: Errors are not shown

Example : s1:s='beep;'; execcom(s1);

procedure EXECPROG (cmd:s; /o:n; params:s);

Executes the indicated Windows program (EXE file).
In this way, external programs can be called from inside of Mirakon.
If a document file is indicated (e.g.: DOC file), Mirakon calls
the assigned Windows program to that file (e.g.: Word).

cmd : Program or document file.

o : Options (characters):
- M = program window appears maximized;
- W = Mirakon waits until the program is closed before
 continuing the execution of the next Tekla commands.

params : Program call parameters

Mirakon - Referenz R11 / 5.2 Program control in general 39

Example : execprog('C:\win\notepad.exe',params='c:myfile.txt');

procedure EXECSHELL (cmd:s);

Executes the indicated Windows instruction (similar to the windows run option).

cmd : windows instruction

Example : execshell('net send XYZ message from Meier');

procedure DEBUGGER (op:i);

Starts the debugger with (op=1) and terminates it with (op=2)
showing the executed instructions and the values of used variables.

Example : debugger(1);
calculate1;
debugger(2);

function WINUID:s;

Returns the memory consumption (in RAM) of the indicated variable V.

Example : x:r; t:a=sizeof(x);

5.2.1 Search and find errors

5.2.1.1 The Debugger

With the integrated debugger internal operational sequences can be analyzed
in detail. This helps enormously with the search for errors and shows as
programmed commands work. The debugger is a tool that functions like
an execution protocol. It shows all implemented instructions as well as the
value of all the variables during their execution.

Procedure:
1. Run the application until the moment before the error will appear;
2. Press the F11-key: The debugger starts;
3. Let the error appear;
4. During the error message: Press the button "Show protocole"
 or (if no error message appears) press F11-key again:
 the Debugger shows detailed execution sequence;

When the program crashes, the debugger should be activated from the Tools menu
with the option "builds DEBUG.TXT" switched on. After the crash, the file
DEBUG.TXT contains the execution structure and can be seen with any text editor

5.2.1.2 See data structures

In the structure editor you can watch the data structure of the
selected element with F12.

With the main menu option information/system variables you can see
the actual value of all system variables.

With the main menu option information/application variables you can
see the actual value of all variables defined in the current application.

With the main menu option information/knowledge base variables you can
see the actual value of all the variable defined in the base module (A000).

Mirakon - Referenz R11 / 5.2.1.2 See data structures 40

5.2.1.3 Implementing instructions manually

With the main menu option Tools/Comands you can, during an application,
write and execute Tekla-commands. This is useful both to query data
(with INFV instruction) as well as to change variables.

5.2.2

procedure STARTAT (d0:d; p:n; /nextd:n);

Executes the indicated Windows program (EXE file).
In this way, external programs can be called from inside of Mirakon.
If a document file is indicated (e.g.: DOC file), Mirakon calls
the assigned Windows program to that file (e.g.: Word).

d0 : Program or document file.

p : Options (characters):
- M = program window appears maximized;
- W = Mirakon waits until the program is closed before
 continuing the execution of the next Tekla commands.

nextd : Program call parameters

Example : execprog('C:\win\notepad.exe',params='c:myfile.txt');

procedure INSATODO (id:s; proc:n; hs:r);

Executes the indicated Windows program (EXE file).
In this way, external programs can be called from inside of Mirakon.
If a document file is indicated (e.g.: DOC file), Mirakon calls
the assigned Windows program to that file (e.g.: Word).

id : Program or document file.

proc : Options (characters):
- M = program window appears maximized;
- W = Mirakon waits until the program is closed before
 continuing the execution of the next Tekla commands.

hs : Program call parameters

Example : execprog('C:\win\notepad.exe',params='c:myfile.txt');

5.3 Numbers and quantities

5.3.1 Algebra

Variables and constants

E r 2.71828 (constant value)

PI r 3.14159 (constant value)

function ABS (x:r):r;

Returns the absolute value of X.

Example : x:r=-4.5; a:r=abs(x); /returns a=4.5

Mirakon - Referenz R11 / 5.3.1 Algebra 41

function ARCTAN (x:r):r;

Returns the arctangent of X in degrees.

Example : x:r=1; a:r=arctan(x); /returns a=45 (degrees)

function COS (x:r):r;

Returns the Cosinus of the indicated angle X in degrees.

Example : x:r=60; a:r=cos(x); /returns a=0.5

function EXP (x:r):r;

Returns E raised to X.

Example : x:r=3; y:r=exp(x); /returns y=20.09

function FRAC (x:r):r;

Returns the non integer part of X.

Example : x:r=-24.75; a:r=frac(x); /returns a=-0.75

function INTHI (x:r):r;

Returns the rounded up integer portion of X.

Example : x:r=24.25; a:r=inthi(x); /returns a=25

function INTLO (x:r):r;

Returns the rounded down integer portion of X.

Example : x:r=24.75; a:r=intlo(x); /returns a=24

function LG (x:r):r;

Returns the decimal logarithm of x (basis 10).

Example : x:r=100; y:r=lg(x); /returns y=2

function LN (x:r)r;

Returns the natural logarithm of x (basis e).

Example : x:r=100; y:r=ln(x); /returns y=4.61

function RND (x:r):r;

Returns the rounded value of X.

Example : r1:r=rnd(24.75); /returns r1=25
r2:r=rnd(24.50); /returns r2=25
r3:r=rnd(24.45); /returns r3=24

function ROUND (val:r; /dec,step:i):r;

Extended rounding function.

val : Value to round

dec : Number of decimal places to be rounded;

step : Rounding step;

Example : x:r=24.762;
y:r=round(x,dec=2,step=5); /returns y=24.75

Mirakon - Referenz R11 / 5.3.1 Algebra 42

function SIN (x:r):r;

Returns the sine of X (in degrees).

Example : x:r=30; y:r=sin(x); /returns y=0.5

function SQRT (x:r):r;

Returns the square root of X.

Example : x:r=9; y:r=sqrt(x); /returns y=3

function TAN (x:r):r;

Returns the tangent of x (in degrees).

Example : x:r=45; y:r=tan(x); /returns y=1

function PWR (a,b:r):r;

Returns A raised to B.

Example : a:r=2; b:r=3; y:r=pwr(a,b); /returns y=8

5.3.2 Numbers order

function RMAX (l:lr):r;

Returns the biggest number from the number list L.

Example : zl:lr=(1,5,-8,3.5); y:r=rmax(zl); /returns y=5

function RMIN (l:lr):r;

Returns the smallest number from the list L.

Example : zl:lr=(1,5,-8,3.5); y:r=rmin(zl); /returns y=-8

function NORMHI (r0:r; l:lr):r;

Returns the largest number from the list L, which is smaller than R0.

Example : zl:lr=(6,8,12,20,30,50);
d:r=normhi(28,zl); / returns d=20

function NORMLO (r0:r; l:lr):r;

Returns the smallest number from the list L that is bigger than R0.

Example : zl:lr=(6,8,12,20,30,50);
d:r=normlo(28,zl); / results d=30

5.3.3 Quantities

function QQ (q:q; u:s):r;

Returns the quantity Q converted to the unit U. The unit U must be
written as the abreviation in the units table in the configuration.

Example : q1:q=2 m; x:r=qq(q1,'mm'); /returns x=2000

Mirakon - Referenz R11 / 5.3.3 Quantities 43

function RQ (q:q):r;

Returns the value (without unit) of the quantity Q.

Example : q1:q=1.4 kg; w:r=rq(q1); /returns w=1.4

function QR (v:r; u:s):q;

Returns a quantity with value V and unit U. The unit U must be
written as the abreviation in the units table in the configuration.

Example : x:r=20; y:q=qr(x,'mm'); /returns y=20 mm

function UQ (q:q):i;

Returns the unit of the quantity Q.

Example : x:q=7.8 kg; u:i=uq(x); /returns u=401

function QABREV (q:q):s;

Returns the unit of the quantity Q as abreviation from the units table.

Example : x:q=7.8 kg; a:s=qabrev(x); /returns a='kg'

5.3.4 Dimensions and tolerances

function DIM (x:s):r;

Returns the nominal dimension of X.

x : Measure with or without tolerances

Example : x1:s='8+-0.1'; m1:r=dim(x1); /returns m1=8
x2:s='120H7'; m2:r=dim(x2); /returns m2=120

function ISO (d:s):r;

Returns the tolerance in ISO-quality number of the dimension X.

Example : x:s='80h6'; t:r=iso(x); /returns t=6
x:s='80+-0.02'; t:r=iso(x); /returns t=8

5.4 Strings

5.4.1 Handling strings

Variables and constants

non n Empty name (= NO name)

function SLEN (s:s):i;

Returns the length the string S.

Example : i1:i=slen('15.7'); /returns i1=4

Mirakon - Referenz R11 / 5.4.1 Handling strings 44

function CHAR (n:i):s;

Returns the character that has the ANSI value N.

Example : s1:s=char(65); /returns s1='A'

function UPC (s:s):s;

Returns the string S upcased.

Example : s1:s=upc('abc123'); /returns s1='ABC123'

procedure DELS (var s:s; pos,nchars:i);

Delete characters from a string.

s : String variable to be changed

pos : Start position from which charcters will be deleted

nchars : number of characters to be deleted

Example : s:s='ABCDEF'; dels(s,2,4); /returns s='AF'

function POSS (obj,source:s; n:i):i;

Returns the position of N-th appearance of OBJ in SOURCE.

Example : i1:i=poss('A1','A1B7A1C3',2); /returns i1=5

function SUBS (s:s; p,n:i):s;

Deletes N-characters from S beginning in the position P.

Example : s1:s=subs('ABC123',3,2); /returns s1='C1'

procedure INSS (obj:s; var s:s; pos:i);

Adds the string OBJ to the string S starting at the position POS.

Example : s1:s='1234'; inss('AB',s1,3); /s1='12AB34'

procedure PUTS (var s:s; obj:s; pos,adj:i);

Builds the string OBJ in the string S in the position P.
ADJ determines the adjustment of OBJ: 1=left-justified 2=right-justified

Example : s1:s='12345';
puts(s1,'AB',3,1); /s1='12AB5'
puts(s1,'XY',9,2); /s1='12AB5 XY'

procedure CLEANS (var s:s; side:i);

Removes all blanks from S.
SIDE: 0=all; 1=left; 2=right; 3=left and right;

Example : s1:s=' A B C ';
cleans(s1,3); /s1='A B C'
cleans(s1,0); /s1='ABC'

function NS (s,sep:s):i;

Returns the number of string segments in S separated with SEP.

Example : s:s='ABC/123/XYZ'; n:i=ns(s,'/'); /returns n=3

Mirakon - Referenz R11 / 5.4.1 Handling strings 45

function SS (s,sep:s; n:i):s;

Returns the N-th substring from S separated with SEP.

Example : s:s='ABC/123/XYZ'; t:s=ss(s,'/',2); /returns t='12 3'

procedure FRS (var s:s; old,new:s);

Replaces all occurrences of OLD by NEW in the string S.

Example : t:s='AB12AB45';
frs(t,'AB','AB/'); /returns t='AB/12AB/45'

procedure FRSL (var l:ls; old,new:s);

Replaces all occurrences of OLD by NEW in the text L.

Example : frsl(txt,'AB','AB/');
/applies FRS to all lines of TXT

function SV (form:i; var l:l; nr:i):s;

Returns the content of a list element as a string.

form : if 0 only the value is returned;
if 1 is returned the Identifier + Value;

l : List where the variable is;

nr : Position of the variable in the list L;

Example : a:l;
a.temp:r=7.5;
t:s=sv(1,a,1); /returns t='TEMP=7.5'

function SX (s:s; l,adj:i):s;

Returns the string S plus a blank Sufix/Prefix so that the length is L.
ADJ=Adjustment: 1=left 2=right.

Example : s1:s=sx('ABC',5,1); /returns s1='ABC '
s2:s=sx('ABC',5,2); /returns s2=' ABC'
s3:s=sx('ABC',2,1); /returns s3='AB'

function MATCHS (obj,source:s; prec:i):i;

Returns the position of N-th appearance of OBJ in SOURCE.

Example : i1:i=poss('A1','A1B7A1C3',2); /returns i1=5

5.4.2 Formatting strings

function SF (/):s;

Returns a formatted string according to the entered parameters.
Each parameter consists of an instruction (1.character) and an operand
(remaining characters).

The following instructions are possible:
 L + number N Limits the next output to N characters;
 V + name N Outputs the contents of the variable N.
 X + number N Moves the cursor to the position N (in number of characters)
 A + number N Sets the adjustment=N (1=left 2 =right)

Mirakon - Referenz R11 / 5.4.2 Formatting strings 46

 F + number N Sets the Format = N (number of decimals, date format, ...)
 S + string Outputs the string constant
 ' + text + ' Writes the text as it is between the apostrophes
 M + number N Moves the cursor the to position M (indicated in mm);

This positioning functions only with left justified text.
 CF + number N Sets the text color = N (default = 0)
 CB + number N Sets the background colour = N (default = -1).

If this color is set, the following letters are drawn on rectangles
with the background colour. With CB-1 this function is deactivated.

 CR + number N Sets the border color = N; (default is -1);
If this color is set, the following letters are drawn with border.
With CR-1 the border is deactivated.

Example : s1:s='ABCDEFGH'; s2:s='123456789'; r1:r=5.3;
u:s=sf(L3,Vs1,X6,L5,Vs2); /returns u='ABC 12 345'
v:s=sf('Value=',X15,A2,F2,Vr1); /returns v='Value= 5.30'

5.4.3 Conversion of types

function IS (s:s):i;

Converts the string value S into an integer value.

Example : s:s='15'; i:i=is(s); /returns i=15

function SI (i:i):s;

Converts the integer value I into a string.

Example : i:i=15; s:s=si(15); /returns s='15'

function RS (s:s):r;

Converts the string S into an real value.

Example : s:s='15.7'; x:r=rs(s); /returns x=15.7

function SR (r:r; k:i):s;

Converts the real value R with K decimal places into a string.
If K=0 to 8: SR contains K decimal places
If K=9: SR contains as many decimal places as R has, however the maximum is 9
if K=10 to 15: SR contains K-10 decimal places and thousand separator.

Example : x:r=12555.75;
s1:s=sr(x,0); /returns s1='12556'
s2:s=sr(x,3); /returns s2='12555.750'
s3:s=sr(x,9); /returns s3='12555.75'
s4:s=sr(x,12); /returns s4='12'555.75'

function RN (n:n):r;

Converts the name N into an real value.

Example : n:n=15.7; x:r=rn(n); /returns x=15.7

function NR (r:r; k:i):n;

Converts the real value R with K decimal places into a name.

Example : x:r=15.7; n1:n=nr(x,3); /returns n1=15.700

Mirakon - Referenz R11 / 5.4.3 Conversion of types 47

function QS (s:s):q;

Converts the string S into a quantity value.

Example : t:s='15.7 mm'; x:q=qs(t); /returns x=15.7 mm

function SQ (q:q; k:i):s;

Converts the quantity value Q with K decimal places into a string.

Example : q1:q=5.128 m; t:s=sq(q1,2); /returns t='5.13 m'

5.4.4 Coding information in strings

Sometimes it is necessary to compact information, so that it can be easily
interpreted later .

Mirakon offers 2 syntax possibilities:

- Character codes (1) (e.g.: ' AB7C3 '):
 Charactercode = letter with a meaning and an associated value as number;
 Advantage: very compact;
 Disadvantage: limited (only numbers as values, only 26 characters)
 procedures: CHV, INSCH, DELCH;

- Characteristic-strings (2) (e.g.: ' A, B2=7, C7=aby '):
 Characteristic = Identificator + value as number or string;
 Characteristics are separated by commas; Values are indicated after "=";
 Advantage: very flexible (limited only by string length of 255 letters)
 Disadvantage: less compact (needs separators)
 procedures: INSC, DELC, SC, IC;

procedure INSCH (ch:s; var s:s);

Adds a charactercode CH into the string S.
A charactercode consists of a letter that can
followed by a number (however not obligator).

Example : s1:s='ABC';
insch('R',s1); /s1='ABCR'
insch('T4',s1); /s1='ABCRT4'

procedure DELCH (ch:s; var s:s);

Deletes the charactercode CH from the string S. (see also INSCH)

Example : s1:s='AB7C';
delch('B',s1); /s1='AC'

function CHV (ch,s:s):i;

Returns the charactercode value of CH from the string S. (see also INSCH)

Example : s1:s='AB7C';
i1:i=chv('A',s1); /returns i1=0
i2:i=chv('B',s1); /returns i2=7
i3:i=chv('F',s1); /returns i3=-1

Mirakon - Referenz R11 / 5.4.4 Coding information in stri 48

procedure INSC (id:n; val:s; var s:s);

Inserts or changes the characteristic ID with the value VAL in the string S.

Example : s1:s;
insc(RL,'3',s1); /returns s1='RL=3,'
insc(BK,'A',s1); /returns s1='RL=3,BK=A,'
insc(RL,'5',s1); /returns s1='RL=5,BK=A,'

procedure DELC (id:n; var s:s);

Deletes the characteristic ID from the string S.

Example : s1:s='RL=3,BK=A';
delch('RL',s1); /returns s1='BK=A,'

function SC (id:n; s:s):s;

Returns the string value from the characteristic ID of the string S.

Example : s1:s='RL=3,BK=A,'; v:s=sc(RL,s1); /returns v='3'

function IC (id:n; s:s):i;

Returns the integer value of the characteristic ID from the string S.

Example : s1:s='RL=3,BK=A,'; v:i=ic(RL,s1); /returns v=3

5.5 Dates and time

function NOW :d;

Returns the time at the moment (date and time).

Example : d1:d=now; /d1 contains the actual date and time

function TODAY :s;

Returns today's date as string.

Example : s1:s=today; /s1 contians today's Date as String

procedure GETD (d:d; /var year,month,day,week,wday, hour,min,sec:i);

Examines the date D and extracts the selected information
to the indicated variables.

D : Date to be examined

YEAR : Variable that receive the year of D

MONTH : Variable that receive the month of D

DAY : Variable that receive the day of D

WEEK : Variable that receive the week of D

WDAY : Variable that receive the week day of D

HOUR : Variable that receive the hour of D

MIN : Variable that receive the minute of D

SEC : Variable that receive the seconds of D

Example : ye,mo,day,h,w:i;
getd(now,year=ye,month=mo,day=day,hour=h);
if h<12:inf('Good Morning');
getd(now,wday=w);

Mirakon - Referenz R11 / 5.5 Dates and time 49

if w=7:inf('Good Sunday');

procedure MAKED (var d:d; year,month,day,hour,min,s ec:i);

Assigns year, month, day, hour, minute and second to date variable D.

Example : d1:d; maked(d1,99,1,11,8,0,0); /d1=11.1.99/8:00

procedure MAKEDW (var d:d; year,week,wday,hour,min, sec:i);

Builds date variable D indicating of year and week number,
weekday (1=Monday 2=Tuesday...), hour, minute and second.

Example : d:d; makedw(d,3,3,2,8,0,0); /returns d=14.1.03/8:00

procedure INCD (var d:d; /years,months,days,hours,m ins:i);

Increases or decreases the variable D by the
number of years, months, days, hours or minutes.

Example : d1:d=now; inc(d1,days=7); /d1=today plus 7 days

function NDAYS (d1,d2:d):i;

Returns the number of days between starting date D1 and final date D2.

Example : d1,d1:d=30.12.02,4.1.03;
n:i=ndays(d1,d2); /returns n=5

function NHOURS (d1,d2:d):r;

Returns the number of hours between starting date D1 and final date D2.

Example : d1,d2:d=1.1.03/08:00,2.1.03/09:30;
n:r=nhours(d1,d2); /returns n=25.5

function NMINS (d1,d2:d):r;

Returns the number of minutes between starting date D1 and final date D2.

Example : d1,d2:d=1.1.03/08:00,1.1.03/09:30;
n:r=nmins(d1,d2); /returns n=90

function RD (d:d):r;

Converts the date D into an real value.
So that time diagrams can be easily computed.

Example : drawbox(rd(d1),y1,rd(d2),y2);

function DR (r:r):d;

Converts a real value R into a date value.

Example : d1:d=dr(x);

function SD (d:d; f:i):s;

Converts a date value into a Sring with the format F.

Example : d:d=3.7.01/08:05;
s1:s=sd(d,1); /returns s1='03.07.01'
s2:s=sd(d,2); /returns s2='3.7.2001'
s3:s=sd(d,3); /returns s3='3.7.01'
s4:s=sd(d,4); /returns s4='03.07.2001/08:05'

Mirakon - Referenz R11 / 5.5 Dates and time 50

s5:s=sd(d,5); /returns s5='08:05'
s6:s=sd(d,6); /returns s6='200107030805'
s7:s=sd(d,7); /returns s7='010703'
s8:s=sd(d,8); /returns s8='200127' (Year+Week numb er)
s9:s=sd(d,9); /returns s9='20010703'

function DS (s:s):d;

Converts a string into a date.

Example : s:s=today; d1:d=ds(s);

5.6 Lists

procedure EMPTY (var l:l);

Empties the contents of the list L.

Example : empty(pr.ks);

procedure DEL (id:n);

Deletes the list element ID;

Example : del(pr.x);

function LLEN (l:l);

Returns the number of list components of L.

Example : loop i=1..llen(text): writes(1,1,1,text.[i]);

procedure INSL (id:s; v:n; var l:l; nr:i; /o:n);

Inserts a variable (new list element) into a list.

id : identifier of the new list element

v : Name of the variable that contains the value to be inserted

l : Destination List

nr : Destination position; if NR=0 V is inserted at the last position

o : Options (letter):
- S = elements are sorted alphabetically according to ID
- N = if ID already exists in L, it is not inserted.

Example : x:r=2.5; z:l; insl('A',x,z,0,o=SN);

function IDOF (path:n);

Returns the identifier of the list element in the position indicated by PATH.

Example : if idof(l.[i])='D1':beep;

procedure SETID (var l:l; nr:i; id:s);

Sets the identifier of NR-th element of L to ID.

Example : l:li=(2,4,7); setid(l,2,'B');
/now the 2nd element of the list
/can be also be accessed with L.B

Mirakon - Referenz R11 / 5.6 Lists 51

procedure MODID (var l:l; id1,id2:s);

Replaces the identifier ID1 by ID2 in all elements of L that
have ID1 as identifier.

Example : modid(pr.daten,'DAUSSEN','DA');

procedure COPYL (var l1,l2:l; nr:i; /o:n);

Copies the contents of the list L1 into the list L2.

l1 : Source

l2 : Destiny list

nr : Insert position in L2; if NR=0, L1 is attached at the end;

O : Options (letter):
- M: only marked elements are copied

Example : copyl(pr1.bs,pr2.bs,0);

5.7 Tables

Variables for table access

After POST, OPENT, PUTT the following variables are set and/or updated:

trowid s Identifier (NR) of active row

tcolid s Identifier of active column

tc l Content of active table cell (list of strings)

tcels s

trows l List of the tables rows

trowp i Position of active table row

tcols i List of table columns

tcolp i Position of active column

function CT (tabid,rowid,colid:name):s;

Returns the contents of a table cell like as it is written.
If one or two parameters are not indicated, the last parameters
are used. This saves time and code and applies to all table access
procedures like CT, IT, RT, ST, NT, DT and QT.

tabid : Table identifier

rowid : Row id

colid : Column id

Example : s1:s=ct(MIF1\BK,D07,NAME);
p1:r=rt(,,PREIS);

function CTI (row,col:i):s;

Returns the contents of the cell of the active table as it is written.

row : Row position

col : Column position

Example : s1:s=cti(2,4);

Mirakon - Referenz R11 / 5.7 Tables 52

function IT (tabid,rowid,colid:name):i;

Returns the content of a table cell converted to an INTEGER.
TABID, ROWID and COLID as in the function CT.

Example : i1:i=it(MUSTER,A01,BED);

function ITI (row,col:i):s;

Returns the contents of a cell from the active table converted to an INTEGER.
ROW, and COL as in the function CTI.

Example : i1:i=iti(2,4);

function RT (tabid,rowid,colid:name):r;

Returns the contents of a table cell and converted to an REAL.
TABID, ROWID and COLID as in the function CT.

Example : r1:r=rt(MUSTER,A01,PREIS);

function RTI (row,col:i):s;

Returns the contents of a cell from the active table and converted to an REAL.
ROW, and COL as in the function CTI.

Example : r1:r=rti(2,4);

function ST (tabid,rowid,colid:name):s;

Returns the contents of a table cell converted to an STRING.
TABID, ROWID and COLID as in the function CT.

Example : s1:s=st(MUSTER,A01,CODE);

function NT (tabid,rowid,colid:name):name;

Returns the contents of a table cell converted to a NAME.
TABID, ROWID and COLID as in the function CT.

Example : n1:n=nt(MUSTER,A01,MASK);

function LT (tabid,rowid,colid:name):list;

Returns the contents of a table cell and converted to a LIST.
TABID, ROWID and COLID as in the function CT.

Example : l1:ls=lt(MUSTER,A01,FILTER);

function LTI (row,col:i):list;

Returns the contents of a cell from the active table converted to a LIST.
ROW, and COL as in the function CTI.

Example : l1:l=lti(2,4);

function DT (tabid,rowid,colid:name):date;

Returns the contents of a table cell converted to a DATE.
TABID, ROWID and COLID as in the function CT.

Example : d1:d=dt(MUSTER,A01,START);

Mirakon - Referenz R11 / 5.7 Tables 53

function QT (tabid,rowid,colid:name):quantity;

Returns the contents of a table cell converted to a QUANTITY.
TABID, ROWID and COLID as in the function CT.

Example : q1:r=qt(MUSTER,A01,PREIS);

function LTAB (tabid:n; rowids:ln; colid,bedid:n; / o:n):ls;

Returns a list of strings from the column COLID of the table TABID.
Only the rows whose number (in NR column) is contained in ROWIDS are taken.
If BEDID is indicated, the condition in the BEDID column is examined.

tabid : Table Identifier

rowids : Line filter (list of line numbers)

colid : Column name; in order to list several columns,
the desired column names can be indicated, separated by |.

bedid : Name of the condition column

o : Options (letter):
- T = sequence of LTAB corresponds to table sequence
 instead of sequence of ROWIDS

Example : menu1:ls=ltab(MAT,(S_,G_),NAME);
menu2:ls=ltab(MAT,(S_,G_),NAME|PRICE,BED,o=T);

procedure FINDR (tabid,colid:n; rowids:ln; var rowi d:s);

Searches for the row in table TABID, whose identifier is contained
in ROWIDS and passes the condition in the column COLID.
The search sequence depends on the ROWIDS list. The identifier of the
first found row is returned in ROWID.

Example : findr(MOD1\WZ,BED,(FR_,B_),p.wz);

procedure FINDT (tabid,colid:n; val:s; var rowids:l);

Searches for the rows in table TABID that contain the value VAL
in the column COLID, and stores their identifiers in the list ROWIDS.

Example : lines:l; findt(TAB1,PRICE,'120',lines);

procedure POST (/tab,rid,cid:n; r,c:i);

Activates a table, a row or a column depending upon the indicated
parameters. Once a table, row or column is activated, it remains
active until the next POST instruction.
After POST the variables TC, TROWID, TROWP, TCOLID, TCOLP are set.

tab : Table Identifier

rid : Row identifier

cid : Column name

r : Row position (starts at 1)

c : Column position; The first column is not NR
but the following (mostly the NAME column).

Example : post(tab=M1\NT); /activates table NT in module M1
post(cid=PR,r=3); /activates column PR and the 3rd row
infv(TROWID); /shows the row ID.
tc.1:s='5'; /inserts 1.line in the active cell = ' 5'
post(r=2); /activates 2.row, active column remain s PR
tc.1:='7'; /changes 1.line in the active cell to '7'

Mirakon - Referenz R11 / 5.7 Tables 54

procedure PUTT (v:n; /tab,rid,cid,o:n; r,c,f:i);

Adds the content of the variable V to the active table.
Tables, rows or columns are activated by PUTT and remain so
until the following PUTT instruction. After the instruction
PUTT the variables TC, TROWID, TROWP, TCOLID, TCOLP are set.

v : Name of the variable containing the value to be inserted

tab : Table identifier

rid : Row identifier

cid : Column name

o : Options (letter):
- I: If line RID it not found, it is inserted
- S: Inserted lines are sorted alphabetically
- A: Values are added

r : Row position (starts at 1)

c : Column position; The first column is not NR
but the following (mostly the NAME column).

f : Format; Depending upon type: Decimal cases or date format

Example : m1:r=230;
putt(m1,tab=MIF1\NT,r=1,c=3,o=A);
putt(m1,rid=[rownr],c=3,o=ISA);

procedure OPENT (t:n; nr,name,cols:s);

Opens a table. After OPENT, T is the active table.

t : Name of the variable (list) that contains the table

nr : Table identifier

name : Table designation

cols : String with the column names and sizes,
each separated with : and ; .

Example : t1:l;
opent(t1,'T','Test','NAME:20;QUANTITY:8;PRICE:12');

procedure INSCOL (p,w:i; id:s);

Inserts a column in the active table.

p : Position of the new column.

w : Width (in number of letters) of the new column.

id : Name of the new column.

Example : inscol(3,20,'PRICE');

procedure MODCOL (/p:i; id:n; w:i; id2:s);

Changes a column in the active table.

p : Position of the column.

id : Name of the column.

w : New width (in number of letters) of the column.

id2 : New name of the column.

Example : modcol(id=NAME,w=20);
modcol(p=3,id2='gew>20');

Mirakon - Referenz R11 / 5.7 Tables 55

procedure DELCOL (/p:i; id:n);

Deletes a column from the active table.

p : Column position

id : Column name

Example : delcol(p=2);
delcol(id=PRICE);

procedure INSROW (p,h,lev:i; id:s);

Inserts a row in the active table.

p : Position of the new row.

h : Height (number of text lines) of the new row.

lev : Hierarchic level of the new row (1 to 20).

id : Identifier of the new row.

Example : insrow(i,1,1,'A07');

procedure MODROW (/p:i; id:n; h,lev:i; id2:s);

Changes a row in the active table.

p : Position of the row.

id : Identifier of the row.

h : New height (number of text lines) of the new row.

lev : New hierarchic level of the row (1 to 20)

id2 : New identifier of the row.

Example : modrow(id=A01,w=20);
modrow(p=3,id2='gew>20');

procedure DELROW (/p:i; id:n);

Deletes a row from the active table.

p : Row position

id : Row identifier

Example : delrow(p=7);
delrow(id=A01);

function EXROW (nr:s):i;

Returns 1 if the row NR exists in the active table and 0 if it does not.

Example : if exrow('A01')=0: inf('Row not found');

function EXCOL (nr:s):i;

Returns 1 if the column NR exists in the active table and 0 if it doesn´t.

Example : if excol('NAME')=0: inf('Column not found');

procedure EDITTAB (t,t0:n; /o:n; b1:s);

Opens the table editor to edit the table T.
If the table T is empty, it is filled with the initial table T0.

T : Table to be edited

T0 : Initial table

Mirakon - Referenz R11 / 5.7 Tables 56

O : Options = sequence of characters with the following meaning:
L = all cells are single-line; Enter key jumps on next cell
A = automatic line numbering (1.2.3...)

B1 : Optional button: Syntax = 'button_name:procedure'

Example : edittab(tab1,tab0,o=LA);
edittab(t1,t0,b1='_Control:controltab');

5.8 Structures

Structures are lists that have elements of the type ELEMENT only.
These elements can contain substructures, as well as parameters
and other assigned data.

5.8.1 Structures handling

Variable for the access to structure elements

After POSE, POSP,or during the TRAVEL-instruction, the following
variables are set and/or updated:

pe ^e Pointer to the active element.

pe0 ^e Pointer to the father of the active element.

enr s Number of the masters of the active element.

enr0 s Number of the master of the father of the active element.

etabid s Masters table of the active element.

emod s Knowledge module of the master table of the active element.

eid s Complete indentifier of the active element.
Format: emod\etabid.enr

ename s Name of the active element.

p l Parameter list of the active element.

d l DATA field of the active element.

ss l Substructure of the active element.

eh i Hierarchic level (1..40) of the active element.

ei i Position of the active element in its hierarchic level.

ech s characteristic of the masters of the active element (column CH).

etyp n Type of the active element, e.g.: R, l, E, GLINE, etc..

ep s Path of the active element.

efound i Result of procedure FINDE.

pefound ^e Pointer to the found element with FINDE.

procedure POSE (var e:e);

Activates the element indicated as E and sets the associated system
variables D, P, SS, ENR, EMOD, ENAME, EP, EH, PE.

Example : pose(pr.bs.2.ss.1); inf('NAME='+ename);

procedure PUSHST;

Saves the current structure context (variables D, P, SS, ENR...)
This command should be issued before POSE or POSP, and must allaways
be followed by a POPST-command.

Example : pushst;

Mirakon - Referenz R11 / 5.8.1 Structures handling 57

pose(pr.ap.1);
ts:s=ename;
popst;

procedure POPST;

Re-establishes the structure context left before with PUSHST.

procedure MODEID (var st:l; id1,id2:s)

Replaces the identifier ID1 by ID2 in all elements of ST that have
ID1 as element master number.

Example : modeid(pr.bs,'DA1','DA');

procedure MODEMOD (var st:l; mod1,mod2:s)

Replaces the module MOD1 by MOD2 in all elements of ST that have
MOD1 as module.

Example : modemod(pr.bs,'MODX','MODY');

procedure MODETAB (var st:l; tab1,tab2:s)

Replaces the table TAB1 by TAB2 in all elements of ST that have
TAB1 as master table.

Example : modetab(pr.ap,'OP','AV');

function NE (var st:l; nr:s; /h:i; c:s; path:n):i;

Searches elements in a structure and returns the number of
elements found.

st : Structure where to search for

nr : Filters for master number

h : Number of hierarchic levels to be searched;
if not indicated, it is assumed H=1;

c : Condition function (optional) filters found elements

path : Path delimitation (optional)

Example : if ne(pr.bs,'EL')>0: inf('Electric found');
p1:n=3.1;
nab:i=ne(pr.bs,'A_,B_',h=5,c=bed5,path=p1);

procedure FINDE (var st:l; /);

Searches an element in the structure ST that fulfills several conditions.
These conditions are entered freely. With the special condition PP, it is
made a PUSHST before and a POPST after the positioning. If the element if found,
the system variable EFOUND gets the value 1 and the system remains there
positioned, i.e. the system variables PE, ENR, ENAME, etc. refere to the found
element. In particular the variable PEFOUND is set and should be used if the
condition PP was entered.

Example : finde(pr.bs,pp,ex(p.width),p.width>120);
if efound: inf(pefound^.name+' found');

Mirakon - Referenz R11 / 5.8.1 Structures handling 58

procedure DELE (var st:l; ids:s; /c:s);

Deletes all elements in the structure ST where the master number is
contained in IDS. With C, additional condition for the deletion can be
formulated.

Example : dele(pr.ap,'A000\OP.A_',c='p.l>250');

procedure POSST (/h:i; p:n; o:n);

Activates all elements in the current structure path;

h : maximum hierarchic level

p : Procedure to be executed in each stage

o : Options (characters):
- P: calls PUSHST before positioning and POPST after
 positioning; thus re-establishing the state before POSST

Example : posst(p=PROC1, o=P);
posst(h=eh-1);

/ in the procedure PROC1 could stand
/ e.g.: if etabid='MAT': material:=enr;
/ thus raw material position is recognized
/ without having a fixed position

procedure SORTST (var st:l; id:n; /inv:i);

Sorts the structure ST according to a given parameter.

st : Structure to be sorted;

id : Name of the parameters to serve as sorting criteria;
This parameter can be from the following types: i, r, s, n, d

inv : If INV=1, ST is sorted in descending order;

Example : sortst(pr.bs,p.width);

procedure MODP (var path:n; l,n:i);

Example :
5.8.2 Generate structures

Variables for generating structures

The following variables are used in the process of generating structures.
PEB, LEB and IEB are set after each build command (->).

peb ^e Pointer to the last inserted element

leb l List that contains de last inserted element

ieb i Position of the last inserted element in LEB

enew i 1 if active element was inserted, otherwise=0

as s Active situation

procedure ACT (as,e0:n; t:s; /d:i; p1,pa1:n; tfp,tf n:s);

Executes the actions defined in the master of the element
(or in the element list) of E0.

AS : Situation for the required actions

Mirakon - Referenz R11 / 5.8.2 Generate structures 59

E0 : Name of the list or element that start the actions

T : Title for the reporting window

D : Display mode: 0=shows nothing; 1=message; 2=report;

P1 : Procedure that will be executed for each position,
before the actions;

PA1 : Id of the path of the producer element.
This path is inserted in DATA of the new builded element

TFP : Positive filters: indicate which positions will be searched

TFN : Negative filters: indicate which positions will not
be searched

Example : act(PAI1,pr.m,'Generation process');
act(GENAP,pr.bs,'Generation process',pa1=BK);
act(K2,pr.ap,'Costs',d=0,p1=posop,tfp='1._,2._');

procedure SETAS(s:s);

Sets the active condition.

Example : setas('PAI1');

5.8.3 Dialogue with structures

Variables for dialogues in structures

The following variables are used for formatting and programming
the behavior of a structure editor:

eol b 1 if the cursor is at the end of the list.

xlfe r X-left-coordinate of the current line

xrfe r X-right-coordinate of the current line

ytfe r Y-top-coordinate of the current line

ybfe r Y-bottom-coordinate of the current line

copyok i Permission to copy into the clipboard in EDITST;
default is 1 (allowed); it can be set in to 0 in
the structure editor handler;

cutok i Permission to cut into the clipboard in EDITST;
default is 1 (allowed); it can be set in to 0
in the structure editor handler;

pasteok i Permission to insert from the clipboard into the selected position;
can be set in the structure editor handler;

delok i Permission to delete in EDITST;
default is 1 (allowed);
can be set in the structure editor handler;

insok i Permission to insert in EDITST;
default is 1 (allowed);
can be set in the structure editor handler;

parsok i Permission to open the dialogue to edit the element parameters.
Default is 1 (allowed);
Can be set in the structure editor handler;

sttabid s Table to be used as source for the structure editor.
Used in the handler procedure of EDITST.

stinsnr s Number of the element to be inserted in the structure editor.
Thus the insert menu does not appear.

Mirakon - Referenz R11 / 5.8.3 Dialogue with structures 60

Used in the handler procedure of EDITST (AT PREINS).

stinst s Title for the insert menu in the structure editor.
Used in the Handler procedure of EDITST.

stinsf s Insertion filter for elements in the structure editor.
Set in the Handler procedure of EDITST.

stinsfm s Insertion filter for modules in then structure editor.
Set in the Handler procedure of EDITST.

Situations for the EDITST-handler

Following situations can be used in the handler of EDITST

PREINS after pressing the INSERT button in the structure editor

POSTINS after inserting an element in a structure

PREDEL after pressing the DELETE button in the structure editor

POSTDEL after the deletion of an element in a structure

PREPARS after pressing the PARAMETERS button in the structure editor

POSTPARS after the parameter editing of an element in a structure

DRAG before starting to drag

DROP before dropping the dragged elements

RCLICK after right Click with mouse

COPYCLIP after pressing CTRL-Ins (copy into the clipboard)

CUTCLIP after pressing SHIFT-Del (cut into the clipboard)

PASTECLIP after pressing SHIFT-Ins (insert from the clipboard)

Situations for the A-column

Following situations can be used in the A-column of the master table:

I2 after the manual insertion of an element in a structure
(before the dialogue mask)

I3 after inserting an element in a structure
(after the dialogue mask)

procedure EDITST (typ:i; var st:l; es,as,opt:n; t1, t2:S /h:n; b:s; id,ef:i);

Opens the structure editor for the structure ST.

TYP : Always 1 (for later use)

ST : Structure to be edited

ES : Source of the elements = Identifier of the master table

AS : Active situation during editing

OPT : Options = letters sequence with the following meaning:
A: Editor with zoom all button
C: Editor with copy button
D: Editor with document button
E: Editor without delete button
F: Editor without insert button
G: Editor with group button (adds masterless groups)
H: Hierarchical position is indicated for each element
K: suppresses F12-Function (see data structure)
L: Editor with relations button
N: Editor with rename button
P: Editor with parameters button

Mirakon - Referenz R11 / 5.8.3 Dialogue with structures 61

Q: Editor with quantity button
R: Editor with resources button
T: Editor with terms button
U: Editor with status button
W: Resources editor with Order button.
 Condition: Resources data base module must be defined as DW!
Y: Suppresses the transfer functions (clipboard)
Z: Editor with zoom button to make the text lines thicker

T1 : First title for the Frame register

T2 : Second title for the Frame register

H : Optional control procedure (handler):
So that structure changes can be controled
(insertion, deletion, etc..).

B : Optional buttons: Syntax: 'Button_name1:Procedure1,Button_name2:Procedur2...'

ID : Identification of the dialogue window;

EF : Options for formatting the lines:
bit1 1: with [doc] if a document is assigned;
bit2 1: with [ress] if resources are assigned;

Example : editst(1,pr.bs,BK,B01,PQ,'Structure analysis',pr.nr);
editst(2,pr.lc,PROD,B07,PQ,'Parts list ',pr.nr);
editst(1,pr.bs,BK,,P,'','',b='Client:inpc,Place:inp p');
editst(1,pr.ap,OP,,PRQ,'Expiration','',h=expcontrol);

Example of control procedure of EXPCONTROL:

AT PREINS: /after pressing the insert button

/in the hierarchy level 1 nothing can be inserted:
if eh=1:insok:=0&exit;
/Insert menu if specified:
if k1='MA':sttabid,stinst:='MA','Material';
if k1='OP':sttabid,stinst,stinsf:='OP','Operations' ,'D_';

at POSTINS: /after the element insertion
if etabid='OP':calculate_operations_nr;

at PREDEL: /after pressing the delete button
/at hierarchy level 1 nothing can be deleted
if eh=1:delok:=0&exit;
/Element MA cannot be deleted
if enr='MA':delok:=0&exit;

at POSTDEL: / after the element is deleted
if etabid='OP':calculate_operations_nr;

at RCLICK: / after mouse Right-click
del(d.menu);/ deletes previous menu
d.menu:l; / builds a new menu
if enr='MA': d.menu.0:s='Material sheet:printmatshe et';
d.menu.0:s='Show costs:showcost';

Formatting the structure lines at the screen
In the column FORMAT you can flexibly design the appearance of an element
in the structure editor. Here you can write commands to change the system
variables EFICON or EFSYMB, EFPREFIX, EFNAME, EFPARS, EFSUFIX.
The output line consists in the concatenation of these system variables.

Mirakon - Referenz R11 / 5.8.3 Dialogue with structures 62

In addition you can specify the line color with the variable EFCOLOR.

It is also possible to draw graphic elements in the output line. By using
the draw instructions (draw, drawline...). The coordinates of the line
rectangle are indicated in the system variables XLFE, YTFE, XRFE, YBFE.
Example : efpars:=sr(p.d,0)+' * '+sr(p.l,2);

if p.status=2: efcolor:=40;

procedure SELP (var st:l; var p:n; /t:s; w,h:r);

Allows to select an element from a structure returning
the position path of the selected element.

ST : Structure from which an element is to be selected

P : Name of the variable (of the type name) that will contain
the path of the element selected by the user.

t : Window title (default is 'component')

w : Width of dialogue window in number of characters / default=80

h : Height of dialogue window in number of lines / default=24

Example : p1:n; selp(pr.bs,p1,t='Please select !');

procedure SELE (var st:l; var p:^e; /t:s; w,h:r);

Allows to select an element from a structure returning
the pointer to the selected element.

ST : Structure from which an element is to be selected

P : Name of the pointer variable (of the type ^e) that will
point to the element selected by the user

t : Window title (default is 'component')

w : Width of dialogue window in number of characters (default=80)

h : Height of dialogue window in number of lines (default=24)

Example : p1:^e; sele(pr.bs,p1,t='Please select !');

procedure DESELAE;

Deselects the structure-field active by EDITST.
This is necessary and important when the structure beeing displayed
must be changed. Mirakon will allways try to return to the selected position.
If this position doesn´t exist, an error will occur.

Example : / button in structure-editor calls following comman ds:
/ in order to empty the all structure
deselae;
empty(pr.bs);
rsetm(MAIN);

function EMARK (p:^e):i

Informs whether the element pointed by P is marked (emark=1) or not (emark=0).

Example : if emark(pe): number++1;

procedure MARKE (p:^e; val:i);

Mark (val=1) and/or unmark (val=0) the element pointed by P.

Example : marke(pe,1);

Mirakon - Referenz R11 / 5.8.3 Dialogue with structures 63

5.8.3.1 Structure editor with master table

Structures with elements from master tables are edited with EDITST.

When a new element is added (INSERT key), the parameters defined in the
PARS column are created, and edited with the dialogue mask indicated
in the MASK column.

After leaving the mask with OK, Mirakon executes all assigned actions for
the active situation.

When the parameters of an existing element are changed with the PARS button,
the system behaviour can be affected with the characteristics indicated
in the CH column:

- E = the sub-structure of the element concerned is emptied, before
 executing the assigned actions. If this sub-structure was
 manually changed, the program asks the user whether he wants to
 overwrite or keep the manually inserted sub-elements.

5.9 Relations

Variables for the handling of relations

During TRAVELR the following variables are set and/or updated.

rtyp i Type of the active relation.

rref i Reference of the active relation.
1=Element is reference 2=Element is referenced (Slave)

pre1 ^e Pointer to the reference element of the active relation.

pre2 ^e Pointer to the dependent element of the active relation.

rdata l Data of the active relation.

5.10 Processes

Prozessen sind Listen von Elementen die grafisch auf eine "Papier"-Fläche
frei darstellbar und positionierbar sind. Diese Elemente lassen sich
beliebig logisch wie grafisch miteinander relationieren.
Prozesse sind geeignet um z.B. Fabrikationsprozesse darzustellen.

5.10.1 Grafic objects and editors

procedure EDITP (var proc:l; tab:n; /relt,h:n; b:s) ;

Opens the grafic editor for the grafic G.

proc : Grafic object

tab : Options (letters sequence):
S = grafic editor is opened as a son window of the
 current dialogue window (small window)

relt :

h :

b :

Example : editp(fp.tp,TPE,relt=RELTAB,b='Berechnen:ber1',mult =1);

Mirakon - Referenz R11 / 5.10.1 Grafic objects and editor 64

Table TPE:

NR NAME PARS MASK G A

T Teile

 TB Blechteil tnr,tbez:s;
mk:r;
b:r:breite mm=40;
h:r:höhe mm=20;
bild:s;

TPTB draw(ab10,gb(0,0,p.b,-p.h));
draw(tf3,th12,x2,y-5,tw1,vp.tbez,x+p.b-1,y-9,ta2,vp .tnr,tw
h2,b2:r=p.h-7,1.2*h2;
bild:s='FPR1\'+p.bild;
draw(gi(bild,2,-7,2+b2,-7-h2));

V Vorgänge

 VK Kleben nl:r;
bez:s='Kleben';
b:r:breite mm=35;
h:r:höhe mm=20;

TPVK draw(ab14,gb(0,0,p.b,-p.h));
draw(tf3,th12,x2,y-5,tw1,'Kleben',tw0);
pars:s=si(p.nl)+' mm';
draw(tf3,th12,xp.b-2,y-p.h+2,ta2,tc40,vpars,ta1,tc0); VP Punkt-Schweißen np:i;

bez:s='Punktschweissen';
b:r:breite mm=35;
h:r:höhe mm=20;

TPVP draw(ab3,gb(0,0,p.b,-p.h));
draw(tf3,th12,x2,y-5,tw1,'Punktschweissen',tw0);
pars:s=si(p.np)+' Punkte';
draw(tf3,th12,xp.b-2,y-p.h+2+8,ta2,tc40,vpars,ta1,t c0);Z Zellen

 ZM Montage-Zelle znr:i;
zbez:s;
flaech:r;
takt:r;

TPZM draw(ab7,gb(0,0,p.b,-p.h));
titel:s='Zelle '+p.znr+' '+p.zbez;
draw(tf3,th12,x2,y-5,tw1,vtitel,tw0);

Table RELTAB:

NR NAME PARS MASK G

BKOP Input Relation funk:s;
farbe:i=40;
ap1:i=2;
ap2:i=4;

RELBKOP p1,p2:point2d;
geted(pie1,p2d=p1);
geted(pie2,p2d=p2);
x1,y1,x2,y2:r=p1.x,p1.y,p2.x,p2.y;
b1,h1:r=pie1^.pars.b,pie1^.pars.h;
b2,h2:r=pie2^.pars.b,pie2^.pars.h;
draw(lcp.farbe,gl(x1,y1,x1b,y1b),
 gl(x1b,y1b,x2b,y2b),le2,
 gl(x2b,y2b,x2,y2),le1,lc0);
xm,ym:r=(x1+x2)/2,(y1+y2)/2;
draw(tf3,th12,tw1,ta3,tcp.farbe,
 xxm+1,yym+1,vp.funk,tw0,ta1,tc0);

5.11 Documents

5.11.1 Listings

Text documents are unformated lists of strings. Pages cannot be indicated
nor numbered. The text is always written in the Font Courier-New.

We recommend the use of grafic documents instead.

procedure OPENLST (var lst:l);

Opens the text document LST.

Example : openlst(tdoc);

Mirakon - Referenz R11 / 5.11.1 Listings 65

procedure EDITLST (var lst:l; t:s; /w,h:r);

Opens the text editor for the document LST, with the title T.
The window width and/or height can be specified with W and H,
in number of characters. If W and H are not specified, the
whole work surface is used.

Example : editlst(tdoc,'Parts list');

procedure WRITES (dr,c,adj:i; val:s);

Writes a string value in the opened text document.

dr : Line jump related to the last written line .

c : Column position.

adj : Adjustment: 1=left-justified 2=right-justified.

val : String value to be written

Example : writes(1,25,1,pr.name);

procedure WRITEI (dr,c,adj,val:i);

Writes an integer value in the opened text document.
Parameters as in WRITES.

Example : writei(0,42,2,i1);

procedure WRITER (dr,c,adj:i; val:r; f:i);

Writes an real value in the opened text document.
Parameters as in WRITES.
F=Format=Number of decimal places

Example : writer(0,25,2,price,2);

procedure WRITED (dr,c,adj:i; val:d; f:i);

Writes a date value in the opened text document.
Parameters as in WRITES.
F = date format (see function SD)

Example : writed(1,2,1,d1,1);

5.11.2 Grafic-Documents

Types for the production of grafic documents

GIMAGE Picture (bitmap) in BMP or JPG format

Variables for the production grafic documents

page i Current page number of the active document.

5.11.2.1 Grafic objects and editors

procedure OPENG (var g:l; nr,name:s; w,h:r; /xm,ym: r; m,np,ep:n; nd:i);

Opens the (formatted) grafic G.

g : Grafic object

Mirakon - Referenz R11 / 5.11.2.1 Grafic objects and edit 66

nr : Number of the grafic object

name : Designation of the grafic object

w : Grafic width in mm

h : Grafic height in mm

xm : Left and Right margin in mm (optional)

ym : Top and bottom margin in mm (optional)

m : Page layout = Mask-Id

np : new page procedure, called after a new page is inserted

ep : End of page procedure, called after a new page is inserted,
but still refering to the last page.

nd :

Example : g1:l;
openg(g1,'A1','Sketch',210,290,xm=20,ym=10,m=M1,np= ns1);
editg(g1);

procedure EDITG (var g:l; /o,build:n; zf,w0,h0:r; i d:i);

Opens the grafic editor for the grafic G.

g : Grafic object

o : Options (letters sequence):
S = grafic editor is opened as a son window of the
 current dialogue window (small window)

build : Name of the procedure that (re)builds the grafic; this parameter
causes a BUILD-button to appear above the grafic window;

zf : Initial zoom factor; Default = 1.0;

w0 : Initial paper width (only if G is empty)

h0 : Initial paper height (only if G is empty)

id : Identification of the dialogue window;

Example : editg(pr.doc1,build=gendoc,zf=1.2);

procedure VIEWG (var g:l; /o,build:n; zf:r; id,nar: i);

Opens the Grafic viewer for the grafic G.
Parameters: equal as in EDITG.

NAR : Without active regions

5.11.2.2 Paper coordinates, fields and frames

procedure SETMARGIN (x,y:r);

Sets the left and top margin, therefore shifting the absolute zero.

x : Left side margin in mm (always positive value)

y : Top margin in mm (always positive value)

Example : setmargin(20,10);

procedure SETZERO (x,y:r);

Sets a new zero point with coordinates X,Y from the absolute paper zero point
which is the top left corner of the paper sheet.

Mirakon - Referenz R11 / 5.11.2.2 Paper coordinates, fiel 67

Example : setzero(20,-110);

procedure DEFGF (id:n; xlp,ytp,xrp,ybp,xli,yti,xri, ybi:r);

Defines a rectangular grafic field in the active document with its
own inner coordinate system.

id : Identifier of the field;

xlp : X-left coordinate on the paper

ytp : Y-top coordinate on the paper

xrp : X-right coordinate on the paper

ybp : Y-bottom coordinate on the paper

xli : X-left coordinate within the field

yti : Y-top coordinate within the field

xri : X-right coordinate within the field

ybi : Y-bottom coordinate within the field

Example : defgf(BAR,20,-50,150,-130,10000,0,0,200);

procedure SETGF (id:n);

Activates the grafic field ID.

Example : setgf(BAR);

5.11.2.3 Drawing texts

procedure SETFONT(font,h,sty,w,col:i);

Sets the font attributes for the following DRAW procedures.

font : Font number in the configuration.

h : Font size in points

sty : 0=normal 1=italic

w : 0=normal 1=bold

col : Text color NR.

Example : setfont(4,10,0,0,0);

procedure DRAWI (x,y:r; adj:i; i:i);

Writes the Integer I at the position X,Y (in mm).

adj : Adjustment: 1=left justified 2=right-justified 3=center

Example : drawi(150,-8,1,i1);

procedure DRAWR (x,y:r; adj:i; r:r; f:i);

Writes the real R at the position X,Y (in mm).

adj : Adjustment: 1=left justified 2=right-justified 3=center

f : Format=number of decimal places

Example : drawr(120,-40,2,price,2);

procedure DRAWD (x,y:r; adj:i; d:d; f:i);

Writes the date D at the position X,Y (in mm).

adj : Adjustment: 1=left justified 2=right-justified 3=center

Mirakon - Referenz R11 / 5.11.2.3 Drawing texts 68

f : Date format (see function SD)

Example : drawd(150,-8,1,now,1);

procedure DRAWS (x,y:r; adj:i; t:s);

Writes the string T at the position X,Y (in mm).

adj : Adjustment: 1=left justified 2=right-justified 3=center

Example :
procedure DRAWQ (x,y:r; adj:i; q:q; f:i);

Writes the quantity Q at the position X,Y (in mm).

adj : Adjustment: 1=left justified 2=right-justified 3=center

f : Format=number of decimal places

Example :
procedure DRAWTEXT (x,y,dy:r; adj:i; var txt:l);

Writes all lines from the list of strings TXT starting at the
position X,Y (in mm).

dy : Line space in mm

adj : Adjustment: 1=left justified 2=right-justified 3=center

Example : txt1:ls=('AAA','BBB','CCC');
drawtext(50,-25,4,1,txt1);

5.11.2.4 Drawing lines and surfaces

procedure SETLINE (sty,wid,end:b; col:i);

Sets the line attributes for the following DRAWLINE procedures.

sty : Line type: 1=full 2 = - - - 3 =... 4 = -. -

wid : line thickness: 1=0.25mm 2=0.35mm 3=0.5mm 4=0.75mm 5=1mm

end : line end: 1=normal 2 = -> 3 = <-> 4 = -< 5 = -o

col : 3 = Line color number

Example : setline(3,1,1,3);

procedure DRAWLINE (x1,y1,x2,y2:r);

Draws a line from the point (x1, y1) to the point (x2, y2).

Example : drawline(150,-8,200,-40);

procedure DRAWARC (x0,y0,rx,ry,a1,a2:r);

Draws a circular or eliptical arc.

x0 : X-coordinate of the center

y0 : Y-coordinate of the center

rx : Radius in x-direction

ry : Radius in y-direction

a1 : Initial angle in degrees

a2 : Final angle in degrees

Example : drawarc(40,-50,25,25,0,360); /arc with ray=25
drawarc(40,-50,5,20,0,180); /top half of an Elipse

Mirakon - Referenz R11 / 5.11.2.4 Drawing lines and surfa 69

procedure SETBOX (form,pat:b; bcol,fcol:i);

Sets the graphic attributes for DRAWBOX.

form : Box format: 0= without border 1=normal 3=3-D-Box

pat : Filling pattern: 0=empty 1=full 2=points 3=points 4=///
5 = \ \ \ 6 = # # # , ...

bcol : Bbackground color number

fcol : Foreground color number

Example : setbox(1,2,14,2);

procedure DRAWBOX (xl,yt,xr,yb:r);

Draws a rectangular box.

xl : X-coordinate of the left edge of the box

yt : Y-coordinate of the upper edge of the box

xr : X-coordinate of the right edge of the box

yb : Y-coordinate of the lower edge of the box

Example : drawbox(150,-8,200,-40);

5.11.2.5 Drawing lines and surfaces

Example : x1,x2,y1,y2:r=20,40,-10,-15;
draw(X0,Y0,W120,H50,GH0,GHy2,GVx2,GL(x1,y1,x2,y2));
draw(X20,Y-60,TF4,TH12,Vename,X60,'ready !');

path2d

segline2d

segarcc2d

segarce2d

5.11.2.6 Using existing grafics

procedure DRAWIMAGE (id:s; xl,yt,xr,yb:r);

Draws an image from the images resources, on the active document.
The image is ajusted to the specified window.

id : Image ID as it is indicated in the resources

xl : X-coordinate of the left edge of the window

yt : Y-coordinate of the upper edge of the window

xr : X-coordinate of the right edge of the window

yb : Y-coordinate of the lower edge of the window

Example : drawimage('LOGO',150,-8,170,-20);

procedure DRAWGRAFIC (var g:l; xl,yt,xr,yb:r; /dm:i);

Draws the grafic G in the specified window on the active document.

g : Grafic object to be drawn

xl : X-coordinate of the left edge of the window

yt : Y-coordinate of the upper edge of the window

Mirakon - Referenz R11 / 5.11.2.6 Using existing grafics 70

xr : X-coordinate of the right edge of the window

yb : Y-coordinate of the lower edge of the window

dm :

Example : drawgrafic(g1,150,-8,200,-40);

procedure DRAWMASK (id:n);

Draws an dialogue mask in the active document.

id : Mask identifier

Example : drawmask(A000\M1);

procedure IMPGIMAGE (file:s; var img:gimage; /fmt,c ompr:i);

Imports an external image file to a variable.
If desired, the file format can be converted.

file : Image file path

img : Image variable where to the picture will be copied

fmt : Image format if it is to be converted: 1=BMP, 2=JPG

compr : Compression factor in %; Default=100; (only for JPG)

Example : mylogo:gimage;
impgimage('C:\LOGO.BMP',mylogo);
drawgimage(mylogo,150,-8,170,-20);

procedure DRAWGIMAGE (var img:gimage; xl,yt,xr,yb:r ; /dm:i);

Draws an image from a variable into the active document.
The image is ajusted to the specified window.
(see example in the procedure IMPGIMAGE)

img : Image variable

xl : X-coordinate of the left edge of the window

yt : Y-coordinate of the upper edge of the window

xr : X-coordinate of the right edge of the window

yb : Y-coordinate of the lower edge of the window

dm :

procedure CONVGIMAGE (var img1,img2:gimage; typ2:i; /compr:i);

Converts an image variable into the indicated format.
The compression factor may be specified (when converting to JPG).

img1 : Source image variable

img2 : Image variable where to the image is converted

typ2 : Image format of img2: 1=BMP, 2=JPG

compr : Compression factor in %; Default=100;

Example : logo1,logo2:gimage;
convgimage(logo1,logo2,2,compr=75);

5.11.2.7 Drawing value and time scales

Mirakon - Referenz R11 / 5.11.2.7 Drawing value and time 71

procedure DRAWSCALE (x1,y1,x2,y2,v1,v2,s1,s2:r);

Draws a value scale from X1, y1 to X2, y2 with values from V1 to V2.

s1 : Step size between written values

s2 : Step size between drawn lines

Example : drawscale(20,-100,20,-30,0,100,10,5);

procedure DRAWTSCALE (tu:i; xl,yt,xr,yb:r; t1,t2:d) ;

Draws a time scale.
Character size should be adjusted before with SETFONT or DRAW.

tu : Scale format, determines what is to be written:
1 = months, weeks and days; 2 = months and year;
3 = weeks; 4 = days; 5 = hours;

xl,yt,xr,yb : Coordinates of the square on the paper:
X-Left, y-Top, x-right, y-Bottom

t1,t2 : Initial and final date of the scale

Example : d1:d=21.3.05; d2:d=4.5.05;
drawtscale(3,0,0,200,-20,d1,d2);

5.11.2.8 General drawing comands DRAW

procedure DRAW (/)

Draws according to the entered parameters.
Each parameter consists of a command (first or first two characters)
and an operand (remaining characters, usualy numbers).

Commands:

X + number : sets the current x-coordinate

Y + number : sets the current Y-coordinate

W + number : sets the current width

H + number : sets the current height

AP + number : sets the filling pattern for areas:
0=empty 1=full 2=points 3=points 4=/// 5 = \ \ \
6 = # # #, ...

AC + number : sets the foreground color

AB + number : sets the background color

AE + number : sets the edge of surfaces: 1=with outline;

BF + number : sets the box format: 0=without border 1=normal 3=3-D-Box

LW + number : sets the line weight

LS + number : sets the line style

LC + number : sets the line color

LE + number : sets the line ending: 1=normal 2=with one arrow
3=with two arrows ,...

TA + number : sets the text adjustment: 1=left 2=right

TF + number : sets the text font

TH + number : sets the text size in points

TW + number : sets the text thickness: 0=normal 1=bold

TS + number : sets the text style: 0=normal 1=italic

Mirakon - Referenz R11 / 5.11.2.8 General drawing comands 72

TC + number : sets the text color

TL + number : sets the maximum text length in mm

TV + number : sets the vertical text adjustment: 1=Baseline 2=Top 3=Middle

TR + number : sets the text angle (in degrees)

GH + Y-value : draws an horizontal line from the actual x-position
and the y-position indicated, with the actual width

GV + X-value : draws an vertical line from the actual y-position
and the indicated x-position, with the actual height

GL(x1,y1,...) : draws a polygon through the indicated corner points X1, y1, etc.

GA(x1,y1,...) : draws a surface with the indicated corner points X1, y1, X2, Y2, etc.

GB(xl,yt,xr,yb) : draws a filled box

GR(xl,yt,xr,yb) : draws a rectangle and sets the actual values for X, Y, W and H;
(ideal for tables)

'Text' : writes the indicated text

V + name : writes the content of the indicated variable

F + number : sets the format = number

M0 : sets the mirror function off

MX : reflects all elements using the x axis

MY : reflects all elements using the y axis

NR : next line

NP : next page

NX : next X

NY : next Y

ZX + number : sets the X coordinate of the zero point

ZY + number : sets the Y coordinate of the zero point

ON1 : switches ON the automatic page change. (switch OFF with ON0)
When, during text writing, the maximum Y-value (defined with RB
parameter in openg command), if exceeded, a new page is inserted.

OP0 : Option P0: suspends printing: after this instruction the
drawn elements will not be printed, they only appear on the
screen (eg.: usefull when using paper with letter heads);

OP1 : Option P1: Enables printing (after using OP0); after this
instruction the drawn elements will be printed again;

OZ0 : Option Z0: Numbers with value 0 will not be written

OZ1 : Option Z1: Numbers with value 0 will be written

Example : x1,x2,y1,y2:r=20,40,-10,-15;
draw(X0,Y0,W120,H50,GH0,GHy2,GVx2,GL(x1,y1,x2,y2));
draw(X20,Y-60,TF4,TH12,Vename,X60,'ready !');

5.11.2.9 Page change

Variable for controlling the page change

page i Current page NR; updated with INSPAGE/SETPAGE

ryt r Y-Top-coordinate of the current line in the active document

ryb r Y-Bottom-coordinate of current line in the active document

rh r Line height in the active document

Mirakon - Referenz R11 / 5.11.2.9 Page change 73

procedure INSPAGE (nr:i);

Adds a new page in the position NR.
OPENG already produces the first page, therefore INSPAGE
is only needed for further pages.
If NR=0, the page is inserted at the end.
The system variable PAGE is updated.

Example : inspage(0);

procedure SETPAGE (nr:i);

Activates the page NR. If NR=0, the last page is activated.
The system variable PAGE is updated.

Example : setpage(1);

procedure NEXTPAGE;

Inserts a new page and executes the new page procedure defined in OPENG;

5.11.2.10 Text adjustment

function SWMM (f,h,w,i:i; s:s):r;

Returns the length of the string S in mm;

f : Font number

h : Text height in points

w : text thickness: 0=normal 1=bold

i : text style: 0=normal 1=italic

s : text which length will be determined

Example : if swmm(4,12,1,0,t)>20: nextrow;

procedure ADJSTXT (f,h,w,i:i; wmax:r; s:s; var txt: l);

Divides a text line in several lines so that the individual
line width (in mm) in TXT does not exceed WMAX.

f : Font number

h : Font height

w : Font thickness: 0=Normal; 1=bold;

i : Font style: 0=Normal; 1=Italic;

wmax : Maximum width in mm

s : Text line

txt : List with the result of the separation

Example : adjstxt(4,11,0,0,50,s,tx1);

5.11.2.11 Active document

You may build grafic elements in such a way, that they react to a mouse right click.
For this you use the system variables GACTIV, DRAWN, GEPARS and GEMENU.

Variables to shape the active document

gactiv i if 1: next grafic element are active;
if 2: next elements are not active;

Mirakon - Referenz R11 / 5.11.2.11 Active document 74

gemenu ls Right-click menu of an active grafic element;
Each string contains: Option-Text:Procedure; (see 6.7.8)

drawn i is 1 when the last draw command was not cliped,
that is, the grafic element is visible

gsel l selected grafic in the grafic editor;

Example : 1) drawing the document:

/... openg(...);...
gactiv:=1; /annonces the active element
drawbox(100,-50,200,70);
if drawn: / if the box is visible
 begin
 gepars.nr:s=n1; /builds parameter NR in grafic el ement
 gemenu.1:s='Process:showproc'; /first menu option
 gemenu.2:s='Terms:term1'; /second menu optio n
 end;
gactiv:=0; /next elements are not active any longer
/ draw instructions... editg(...)

2) in the procedure SHOWPROC:

if exobj(ordf,gepars.nr)=0:inf('Order is missing ') ;
else load(ordf, gepars.nr, of);
/....

procedure SETAREG (xl,yt,xr,yb:r; h:n; /bc:i; p1:s) ;

Defines an active area (active region) in the document.

xl : X-left-coordinate of the square area

yt : Y-top-coordinate of the square area

xr : X-right-coordinate of the square area

yb : Y-bottom-coordinate of the square area

h : Handler procedure

bc : background color

p1 : String parameter of the square area

Example : setareg(12,-20,32,-35,goto1,p1=path);

5.11.2.12 Grafic components

You can define parameterizable grafic components in the GCM table (Grafic Component
Masters) in the resources of any module. Then, the grafic editor offers the possibility
to insert and parameterize these predefined grafic components.

Grafic components can have TEKLA commands assigned (right Mouse-click/commands),
which are executed when the user clicks them with the left mouse button.

NR NAME PARS MASK G
FE Form element

 FEAZ External cylinder d,l:r; GCFEAZ x:r=p.l;
y:r=p.d/2;
draw(gl(0,0,0,y,x,y,x,0));

MB Mechanical engineering

 MBTO Tolerances form:i=1;
tol:s='0.01';
ref:s:reference;
h:r:height in mm=7;

GCMBTO drawmbto;

 MBWN Company standards

Mirakon - Referenz R11 / 5.11.2.12 Grafic components 75

5.11.2.13 Grafic buffers

With the command INSGBUF it is possible to attach several grafic symbols to
a grafic without drawing them yet. The grafic editor offers then the possibility
to insert these symbols one after the other in the grafic G.

Example : /pr.g is a grafic thal will have attached symbols
insgbuf(pr.g,'E1','Element 1',100,100);
draws(10,-20,1,'TEXT1 ');
drawbox(10,-30,30,50);
insgbuf(pr.g,'E2','Element 2',100,100);
opengroup;
draws(40,-20,1,'TEXT2');
drawbox(40,-30,60,50);
closegroup;

procedure INSGBUF (var g:l; id,name:s; w,h:r);

Opens the definition of a symbol grafic buffer for the grafic G.

g : Grafic

id : Symbol identifier (not always necessary)

name : Symbol designation (appears in grafic buffer menu)

w : Width in mm of the surface that contains the symbol;

h : Height in mm of the surface that contains the symbol;

Example : insgbuf(pr.g,'','Station A1',100,100);
drawline(2,-5,20,-5);
draws(2,-10,1,'STATION A1');

procedure OPENGROUP;

Opens a group of grafics in the active grafic.
All grafic elements that are after drawn with DRAWxxx commands,
are stored into this group and thus appear grouped.

Example : opengroup;
drawline(x1,y1,x2,y2);
drawline(x3,y3,x4,y4);
closegroup;

procedure CLOSEGROUP;

Deactivates the group opened before with OPENGROUP.

5.11.3 Flow text documents

5.11.3.1 Document objects and editors

procedure OPENDOC (var doc:l; nr,name:s; w,h:r; /lm ,tm,rm,bm:r);

Opens the (formatted) text flow document DOC.

doc : Document object

nr : Number of the document object

name : Designation of the document

w : document width in mm

h : document height in mm

Mirakon - Referenz R11 / 5.11.3.1 Document objects and ed 76

lm : left margin in mm (optional)

tm : top margin in mm (optional)

rm : right margin in mm (optional)

bm : bottom margin in mm (optional)

Example : d1:l;
opendoc(d1,'A1','Report',210,290,lm=20,tm=10);
editdoc(d1);

procedure EDITDOC (var doc:l; /mode:i);

Opens the document editor for the document DOC.

doc : Document object

mode : Work mode: 1=Text frame 2=Total Area (Default=1)

Example : editdoc(pr.doc1,mode=2);

procedure VIEWDOC (var doc:l; /mode:i);

Opens the Document viewer for the document DOC.

doc : Document object

mode : Work mode: 1=Text frame (default); 2=Total Area

Example : viewdoc(pr.doc1,mode=2);

5.11.3.2 General draw command DOC

procedure DOC (/)

Writes in according to the entered parameters.
Each parameter consists of a command (first or first two characters)
and an operand (remaining characters, usualy numbers).

Commands:

X + Number : sets the current column

Y + Number : sets the current paragraph

TF + Number : sets the text font

TH + Number : sets the text size in points

TW + Number : sets the text thickness: 0=normal 1=bold

TS + Number : sets the text style: 0=normal 1=italic

TC + Number : sets the text color

TP + String : sets the paragraph format

'Text' : writes the indicated text

V + Name : writes the content of the indicated variable

F + Number : sets the format = number

Example : doc(X1,Y1,TF3,TH12,'Title',Y5,TH9,'Date:');

5.11.4 Book-documents

Mirakon - Referenz R11 / 5.11.4 Book-documents 77

5.11.4.1 Book objects and editors

procedure OPENBOOK (var doc:l; nr,name:s);

Opens the (formatted) book DOC.

doc : Book object

nr : Book Ident. NR

name : Book designation

Example : b1:l;
openbook(b1,'A1','Report');
editbook(d1);

procedure EDITBOOK (var doc:l; /zf:r);

Opens the book editor for the book DOC.

doc : Book object

zf : Initial zoom factor; Default=1.0;

Example : editbook(report,zf=1.2);

procedure VIEWBOOK (var doc:l; /zf:r);

Opens the book viewer for the book DOC.
Parameters: same as in EDITBOOK.

5.12 Files and folders

function EXFILE (f:s):i;

Informs whether a file exists or not.
Returns 1 if the file exists and 0 if it does not exist.

F : File path

Example : if exfile('C:\temp\test.doc')=0: inf('Document miss ing!');

procedure COPYFILE (f1,f2:s);

Copies a file.

f1 : File to be copied

f2 : Destination path for the file copy

Example : copyfile('IMPORT.TXT','D:\TEMP\IMPORT03.TXT');

procedure RENFILE (f1,f2:s);

Renames a file.

f1 : File to be renamed.

f2 : New name.

Example : renfile('C:\IMPORT.TXT','C:\IMPORT2.TXT');

procedure DELFILE (f:s);

Deletes the file F.

Example : delfile('C:\IMPORT.TXT');

Mirakon - Referenz R11 / 5.12 Files and folders 78

procedure CREATEDIR (dir:s);

Inserts a new folder.

dir : Folder path.

Example : createdir('C:\MIRAKON\ARCHIVE');

procedure REMOVEDIR (dir:s; /o:n);

Deletes an empty folder.

dir : Folder path.

o : Options (letters sequence):
- E = The folder content is deleted

Example : removedir('C:\MIRAKON\ARCHIVE',O=E);

function EXDIR (dir:s):i;

Informs whether a folder exists.

dir : Folder path

Example : if exdir('C:\temp'): inf('Folder found');

5.13 Data bases

In order to store or load objects from a data base you must indicate the data
base module. You do this indicating of the data base ID, one dot and the module ID.
Example: save(KNO.A000,obj);
/saves the object OBJ in the module A000 of the knowledge base KNO

Accessing modules of the standard work base DAT (most frequent case)
does not need the indication of the data base ID:
Example: save(ART, obj);

5.13.1 Handling of objects

function EXOBJ (wm:n; nr:s; /db:i):i;

Informs whether an object is present in a data base.
Returns = 1 if exists or 0 if does not exist.

wm : Data base module

nr : Object number

db : Number of an external data base (opened with OPENDB)

Example : if exobj(ART,'123')=0: inf('Product 123 does not ex ist');
if exobj(KNO.A000,'RS')=0: inf('Table RS does not e xist');

procedure LOAD (wm:n; key:s; var wobj:l; /o,st0:n; max,db:i);

Loads an object from a data base into a variable.

wm : Data base module

key : Object number

wobj : Variable that will contain the loaded object

o : options: Letters sequence with the following meaning:
- C: Creates a new object if NR does not exist;
- N: Formats the object again if found;

Mirakon - Referenz R11 / 5.13.1 Handling of objects 79

- U: Loads only if the object is not unlocked;
- L: Locks the object after loading it;

st0 : Procedure with the definition of the initial structure;

max : Number of object fields to be loaded;

db : Number of the external data base (opened with OPENDB)

Example : load(ART,'123',a);
load(ARC02.ART,nr1,a1,o=C);

procedure SAVE (wm:n; var obj:l; /i,db,compress:i);

Saves an object in a data base.

wm : Data base module

obj : Object to be saved

i : if 1: informs if the data base is locked.

db : Number of an external data base (opened with OPENDB)

compress : compress=1 The object is compressed before the save.

Example : save(ART,a);

procedure LOADE (wm:n; key,varname:s; varid:n; /db: i);

Loads a field of an object from a data base into a variable.
This field must be on the first hierarchic level of the object.

wm : Data base module

key : Object number

varname : Name of the field to be loaded.

varid : Variable that will contain the loaded object field

db : number of an external data base (opened with OPENDB)

Example : cnr:s;
loade(ART,'123','CLIENTNR',cnr);

procedure SAVEE (wm:n; key,varname:s; varid:n; /db: i);

Changes the value of the field VARNAME of the object KEY with the value
contained in VARID.
This field must be on the first hierarchic level of the object.

wm : Data base module

key : Object number

varname : Name of the field to be changed.

varid : Variable that contains the value.

db : number of an external data base (opened with OPENDB)

Example : cnr:s='C025';
savee(ART,'123','CLIENTNR',cnr);

procedure DELWOBJ (wm:n; nr:s; /db:i);

Deletes one or several objects from a data base.

wm : Data base module

nr : Number of the object to be deleted. This can also be a filter,
for the deletion of several objects (see example).

db : Number of an external data base (opened with OPENDB)

Mirakon - Referenz R11 / 5.13.1 Handling of objects 80

Example : delwobj(ART,'123'); /deletes the object '123' from ART
delwobj(ART,'M_'); /deletes all objects that start with M

function OBJNAME (wm:n; nr:s; /db:i):s;

Returns the name of an object from a data base without loading him.
Advantage: Speed.

wm : Data base module

nr : Object number

db : Number of an external data base (opened with OPENDB)

Example : t:s=objname(ART,a.nr);

function OBJINF (wm:n; nr:s; /db:i):s;

Returns the characteristic of an object from a data base without loading it.
Advantage: Speed. The characteristic is a string that is identified with
INF and is always at the 4th position in the object structure.

wm : Data base module

nr : Object number

db : Number of an external data base (opened with OPENDB)

Example : ch:s=objinf(ART,a.nr);
if poss('V',ch,1)>0: inf('validated');

procedure PUTOBJINF (var obj:l; inf:s);

Inserts the characteristic INF in the object OBJ.
If the object has already a characteristic, it is replaced.
See also function OBJINF.

Example : putobjinf(pr,'A4,V,X=20');

procedure FMTOBJ (var obj:l; nr,name:s; st0:n);

Formats an object with an initial structure.
The procedure FMTWOBJ was used in earlier versions and is only
implemented for compatibility reasons (not recommended).

obj : Object to be formatted

nr : Object number

name : Object name

st0 : Identifier of the procedure that contains the initial structure

Example : fmtobj(product,'123','Screw',ARTST0);

procedure LOCKOBJ (wm:n; nr:s; /db:i);

Locks an object for all the other users. If it is already locked,
the procedure is not executed and the system variable DBRES gets the value 2.

wm : Data base module

nr : Object number

db : Number of an external data base (opened with OPENDB)

Example : lockobj(ART,'A1'); /locks the Object A1
if dbres>0:inf('Object is already locked');

Mirakon - Referenz R11 / 5.13.1 Handling of objects 81

procedure UNLOCKOBJ (wm:n; nr:s; /db:i);

Unlocks an object for all the other users. If it is already locked
for another user , the procedure is not executed and the system
variable DBRES gets the value 2.

wm : Data base module

nr : Object number

db : Number of an external data base (opened with OPENDB)

Example : unlockobj(ART,'A1'); /unlocks the object A1

function OBJLOCKED (wm:n; nr:s; /db:i):i;

Informs whether an object is locked (Returns 1).

wm : Data base module

nr : Object number

db : Number of an external data base (opened with OPENDB)

Example : if objlocked(ART,nr)=1: inf('Object locked');

procedure GENKEY (var key:s; wm:n; prefix:s; ndigit s:i; /db:i; startnr:a; wm2:n);

Generates an object number that does not yet exists. This number consists
of a prefix and a sequencial number.
Functioning mode: The sequencial number is incremented, starting from 0;
for each number, it is examined whether an object with that number already exists;

key : Variable that will contain the generated number

wm : data base module

prefix : prefix of the object number

ndigits : number of digits of the generated sequence

db : number of an external data base (opened with OPENDB)

startnr : starting number, if it is not 0

wm2 : second data base module that should also be consulted;
Example: archives

Example : /assuming that the objects A01 and A03 already exis t
genkey(k,PROD,'A',2); / returns K = 'A02'

procedure SETSAVE (objid:n; dm:n);

Assigns a new data base module to an object.
Purpose: If the user switches between different work modules
the object to be saved must be rerouted.

objid : Variable that contains the object

dm : New data base module

Example : pr:l&save(PROD)
moduleid:s='PROD';
/after moduleid is changed ...
setsave(pr,[moduleid]);

function WBL (wm:n; form:i; keys:s; /db:i):ls;

Returns a list of numbers and/or names of the objects inside a data base module.

wm : Data base module

form : 1: only numbers 2: only names 3: Numbers+Names

Mirakon - Referenz R11 / 5.13.1 Handling of objects 82

keys : Filter for the desired numbers

db : Number of an external data base (opened with OPENDB)

Example : l1:l=wbl(PROD,3,'A_,B_');

function WBML (db:i):l;

Returns a list of numbers and/or names of the objects inside a data base module.

db : Data base module

Example : l1:l=wbl(PROD,3,'A_,B_');

procedure FILTERWB (wm:n; var kl:l; kpat:s; /f:n; h ,db:i);

Filters all object numbers from the work base module WM with the filter KPAT
and returns them in the list KL. With F you can indicate a function
to examine further conditions. This function should be of the type REAL,
if it does not return 0, the respective object number is returned in KL.
By setting the variables SORTID1 and SORTID2 (strings) in the function F,
the list KL is multi-level sorted.

wm : Data base module

kl : List to return the filtered object numbers

kpat : Object number filter

f : Filter function

h : Number of sort stages (maximum 2)

db : Number of an external data base (opened with OPENDB)

Example 1: keys:l;
filterwb(PROD,keys,'A_',f=C7); /without sorting

funktion C7:i;
 c7:=0;
 load(PROD,keyi,pr);
 if pr.lenght>200:c7:=1;
 end;

Example 2: filterwb(PERSONAL,keys,'_',f=C8,h=1); /1-stage sort ing

function C8:i;
 c8:=1;
 load(PERSONAL,keyi,pers);
 sortid1:=pers.name; /Sort criteria=name of the p erson
 end;

possible result:

 KEYS:list
 |
 +-- MEIER PETER:s='7803';
 +-- MÜLLER HANS:s='3354';
 +-- WILLIAMS JOHN:s='5072';

Example 3: filterwb(PROD,keys,'_',f=C9,h=2); /2-stages sorting

Funktion C9:i;
 c9:=1;
 load(PROD,keyi,pr);
 sortid1:=pr.client; /1st. Sort criteria=Client Na me

Mirakon - Referenz R11 / 5.13.1 Handling of objects 83

 sortid2:=pr.name; /2nd. Sort criteria=Product n ame
 end;

possible result:

 KEYS:list
 |
 +- BMW:list; 1st. Client
 | |
 | +- DRIVE:s='G870012';
 | +- SHAFT:s='A201456.1';
 |
 +- MERCEDES:list; 2nd. Client
 | |
 | +- BOLT:s='A048765B';
 | +- SHAFT:s='A338945.0';

procedure SECOBJ (var obj:l; level,cond:i);

Secures an object against certain operations by certain users.

obj : Object that will be secured

level : safety stage:
1 = allows to load and see/change the object, but not
 to save, delete or rename it;
2 = does not allow to see, edit, copy, export or print the object
3 = does not allow to load (i.e. use) the object.

cond : Protection condition:
1 = protection against all users with unequal password
2 = protection against all users with unequal status
3 = protection against all users with unequal user ID

Example : secobj(pr,1,1);

5.13.2 Handling of data bases

procedure MAKEDB (file:s);

Produces a new Mirakon data base (Dat or KNO File).
This is only necessary if the data base is not defined in the configuration.

file : File (path + name)

procedure OPENDB (var db:i; file:s; /accmode,compre ss:i);

Opens a Mirakon data base (DAT or KNO File) and returns the assigned
data base number in the variable DB.
This is only necessary if the data base is not defined in the configuration.

db : Variable that receives the data base number

file : File (path + name)

accmode : 1=Direct; 2=Through server (only for Client\Server version)

compress : compress=1: compress the object before saving it in the data base

Example : archive:i; opendb(archive,'c:\arc\DATA02.DAT');

Mirakon - Referenz R11 / 5.13.2 Handling of data bases 84

procedure CLOSEDB (db:i);

Closes the data base indicated by DB.

db : Data base number (in accordance with OPENDB command)

Example : closedb(db1);

procedure LOCKWB (wb:n; /i:i);

Locks the work base WB for all other users.
If it is already locked the procedure is not executed
and the system variable DBRES gets the value 1.

wb : Data base ID

i : with I=0 information about a possible failure is suppressed.
The default is I=1

Example : lockwb(PROD,i=0);
if dbres>0:inf('Products file is locked');

procedure UNLOCKWB (wb:n; /i:i);

Unlocks the work base WB for all the other users.
If it is already unlocked the procedure is not executed
and the system variable DBRES gets the value 1.

wb : Data base ID.

i : with I=0 information about a possible failure is suppressed.
The default is I=1

Example : unlockwb(PROD);

function WBLOCKED (wb:n):i;

Returns 1 if the data base is locked and 0 if it is unlocked.

wb : Data base ID.

Example : if wblocked(PROD)=1: inf('Products file is locked') ;

function EXWMOD (id:s; /db:i):i;

Informs whether a module exists in a data base.

id : Module ID.

db : Number of an external data base (opened with OPENDB)

Example : if exwmod('PROD')=0: inf('Module PROD does not exis t');

procedure INSWMOD (id,name:s; /p,db:i);

Inserts a module into a data base, if it does not already exist.

id : Module ID

name : Module designation

p : Position in the modules list;

db : Number of an external data base (opened with OPENDB)

Example : inswmod('PROD','Products',p=3);

Mirakon - Referenz R11 / 5.13.2 Handling of data bases 85

procedure DELWMOD (id:s; /db:i);

Deletes a module from a data base, if it exists.

id : Module ID

db : Number of an external data base (opened with OPENDB)

Example : delwmod('PROD');

procedure REBUILDDB (/file:s; id:n; refnr:i);

Rebuilds a data base.

file : Data base file name (alternative to the ID)

id : Data base ID in accordance with the configuration.

refnr : if 1, internal reference numbers are rebuilded (default=0)

Example : rebuilddb(id=PROD);
rebuilddb(file='C:\ARCHIVE\PROD.DAT',refnr=1);

function NKEYS (wm:n):a;

WM :

procedure COPYDB (id,dir:s; /fname:s);

Opens a Mirakon data base (DAT or KNO File) and returns the assigned
data base number in the variable DB.
This is only necessary if the data base is not defined in the configuration.

id : Variable that receives the data base number

dir : File (path + name)

fname : 1=Direct; 2=Through server (only for Client\Server version)

Example : archive:i; opendb(archive,'c:\arc\DATA02.DAT');

5.13.3 Interactive access to data bases

Variables for the data base access with LOADER

dbok i Permission to load/delete/insert

dbkey s Number of the selected object

dbname s Name of the selected object

dbkey0 s Default object NR for LOADER with the option A.

dbobjid s Determines the object line in LOADER

dbobjcolor i Color of the object line in LOADER.

idxnr s Index number of the loaded object.

idxname s Index name of the loaded object

idxtab l Index table that was last used .

lmask i Switches for the LOADER Dialogue (default=1):
when lmask=0, the standard dialogue for insert, copy
or rename are replaced by your own dialogue procedures.
After the dialogue, you must communicate to Mirakon
how the object is to be numbered and designated using the
system variables DBKEY and DBNAME. At the end of the dialogue,
if DBOK=1, Mirakon continues the LOADER procedure (insert,
copy or rename). See LOADER procedure, exampl 1, at L5:...

Mirakon - Referenz R11 / 5.13.3 Interactive access to dat 86

Situations for the data bases access

During the access to data bases with the LOADER-command, following
situations can be used:

L1 Before loading an object

L2 After loading an object

L3 Before the deletion of an object

L4 After the deletion of an object

L5 Before the insertion dialogue

L6 After closing the loader

L7 Before renaming an object

L8 After renaming an object

L9 Before copying an object

L10 After copying an object

ARC When archiving

RST When restoring

procedure LOADER (wm,hp:n;var obj:l; /o,sp,st0,idx, flt,st:n;gf,of,ti,b:s;db:i);

Opens the loader dialogue so the the user can select and load an
object from a data base into a variable. The loader allows also
creating, deleting, renaming and copying of objects.

wm : Data base module

hp : Handler procedure: this procedure defines a specific behaviour
in the different loader situations L1, L2, L3, etc..
By setting DBOK:=0 the loading or the deletion are prevented.

obj : Variable where the loaded object is returned

o : Options: Sequence of letters with the following meaning:

A: Automatic allocation of numbers. When the user wants to insert
 a product, the number field of the insertion dialogue will
 contain the content of the variable DBKEY0.

G + number: With button "Generate" for automatic allocation
 of numbers. When this button is pressed, the program looks
 for a new number, consisting of the existing prefix in the
 number field and the smallest number sequence with as many
 digits as the number in the G option. This new number appears
 in the number field.

J: Automatic jump to the insert mask, without the user having to
 press the INSERT key/button.

H + number: Certain standard buttons do not appear:
 H1: INSERT button (i.e. the user cannot insert an object)
 H2: DELETE button (i.e. the user cannot delete an object)
 H3: RENAME button (i.e. the user cannot rename an object)
 H4: COPY button (i.e. the user cannot copy an object)
 H6: FILTER button (i.e. the user cannot filter)
 H7: LOAD button (i.e. the user cannot load an object)
 H0: All standard buttons (H1 to H7)

M: Automatic jump to the ok button in the insert mask,

Mirakon - Referenz R11 / 5.13.3 Interactive access to dat 87

 without the user having to press the enter key twice.

O: With ARCHIVE-button.

P: With RESTORE-button.

Q: Enables export/import of external objects (OBJ-Files)

R: Keeps the last position in group index.

S: Allows the input of the object number.

T: With TRANSFER-button,allowing objects to be transfered
 between 2 data bases.

U: Object will not be locked after beeing loaded.

X: The index prefix does not appears in the number input field
 but in a separate display field.

W + number: Width of the index menu (default = 28).
 If you enter W0, the index does not appear.

Z: Index menu without the option "ALL"

sp : String format procedure allows formatting the object list
(see example 4)

st0 : Procedure with the definition of the initial structure

idx : Table with data base module group index

flt : Table with the filter definitions

st : Sorting table

gf : Group filter for limiting the group index

of : Object filter for limiting the object list

ti : Title for the loader window.

b : Optional buttons:
Syntax: Button_name1:Procedure1, Button_name2:Procedure2,...

db : Number of an external data base (opened with OPENDB)

Example 1: loader(PROD,hp1,pr);

procedure HP1;
at L2:
 prname:=pr.nr+' '+pr.name;
 dspsf(D1);
at L3:
 if pr.status=2:
 begin
 inf('Deletion not allowed');
 dbok:=0;
 end;
at L5: /before the insertion of a new object
 lmask:=0;
 ournr,ourprefix,ourname:s='';
 mask(NEWPRODUCT,o=A);
 if escaped: dbok:=0&exit;
 failure:i=0;

Mirakon - Referenz R11 / 5.13.3 Interactive access to dat 88

 control(ournr,ourprefix,failure);
 if failure: dbok:=0&exit;
 dbkey:=ourprefix+'.'+ournr;
 dbname:=ourname;
 dbok:=1;

Example 2: dbkey0:='A-'+today;
loader(PROD,hp1,pr,o=AJG3);

Example 3: loader(ORD,hp2,order,o=W0,b1='_Terms');

procedure HP2;
at LB1:
load(ORD,dbkey,order);
mask(TERMS);
save(ORD,order);

Example 4: loader(PROD,lp,pr,SP=fprod);

procedure FPROD;
 obj:l;
 load(PROD,dbkey,obj);
 dbobjid:=obj.nr+' '+obj.client;
 /or: dbobjid:=sf(Vdbkey,M15,Vdbname);
 end;

Example 5: loader(PROD,lp,pr,gf='A_,B_');
/only the groups starting by A or B appear

function LASTOBJS (wm:n; / db:i);

Returns the list of the last loaded objects from module WM.

wm : Data base module

db : Number of an external data base (opened with OPENDB)

Example : nr:s;
options:l=lastobjs(prod);
selid(nr,options,'Last loaded products',20,-5,20,6) ;
load(prod,nr,pr);

5.13.3.1 Table of contents for LOADER

Data base access with table of contents
The access to big data bases can be much more friendly if you use
an indexed table of contents.

Procedure:

- create the table of contents (also called group index).
- Call the Loader with optional parameter IDX=Table ID

Example: Table of contents for a product data base module:

NR NAME

IP Single parts

 IPC Casting parts

 IPCB Big casting parts

 IPCS Small casting pars

 IPR Rotation parts

 I (all single parts)

CG Constructive groups

Mirakon - Referenz R11 / 5.13.3.1 Table of contents for L 89

The hierarchical grouping in the table of contents is achieved by the indentation
of the numbers in the NR column, and helps the user to find his object as fast as
possible, without knowing the object number. The group number in the NR column
must be the prefix of the object number, only then the object is contained in the group.

Example: The group IPCG contains the objects IPCG001, IPCG07A, IPCGTEST, etc..

5.13.3.2 Initial structures in LOADER

If an object is inserted in a work base, Mirakon must know its initial structure.
This is described in form of a procedure and communicated to the LOADER.

This procedure contains declarations of variables (object fields) that
are attached to the object list when a new object is created .

Example : /Procedure CLIST0, the initial structure of a clien t:

adr:l; / address
tel:s; / telephone
pcz:s; / postal and zip code
rem:l; / remarks
evs:l; / list of events
chr:l; / list of characteristics
cnv:r; / conversion

/During the application, the list of the fields EVS and CHR
/can be filled with new elements as well as new
/fields can be inserted into the object structure.
/The initial structure is only a "skeleton"
/that is filled with data during the applications.

5.13.3.3 Structure of filters in LOADER

The friendly search of objects in an extensive work base can be made with
user defined filters.

Procedure:
1 LOADER must be called with the optional parameter FLT (filter table);

Example: loader(PROD,LP,pr,flt=PRODFLT);
2. Create global filter criteria variables (in the INIT procedure);

E.G.: fltnr:s:filter for product number='_';
 fltname:s:filter for product name='_';
 fltcli:filter for client='_';

3. Create a Filter table with the columns NAME, MASK and A:
The filter table contains a filter per row;
Each filter can call a dialogue (dialogue mask in MASK column);
The A-column contains the Tekla commands that decide whether an object
if filtered or not.

NR NAME MASK A

F1 General filter MF1 if o.nr out (fltnr):exit;
if o.name out (fltname):exit;

load(PROD,o.nr,o);
ok:=o.ad.client in (fltcli);

F2 Technical Data MF2

4.

Mirakon - Referenz R11 / 5.13.3.3 Structure of filters in 90

Create the dialogue masks, at best beside the filter table;
Here you ask the values for the different filter criteria,
e.g.: Product number filter in FLTNR, product name filter in
FLTNAME and client filter in FLTCLI;

Function mode:

1. The user presses the button FILTER (during the loader execution);

2. Mirakon opens the filter menu in accordance with the filter table;

3. The user selects one filter;

4. Mirakon opens the assigned dialogue mask;

5. The user answers to the questions about the filter
criteria and presses OK;

6. Mirakon starts the filter process:
It loads the first 4 fields of each object in the variable O.
The variable OK is set to 0;
The commands in the A-column are executed;
If the variable OK = 0, the object is filtered;
If a filter criteria needs further object fields, the
complete object must be loaded using the LOAD-command.

7. As a result of this process, only the objects that pass
the filter criteria appear in the LOADER-list.

5.13.4 Fast access to objects data

Fast access variables are object "key" variables, normally used to filter,
search and/or sort objects, so they need to be fast acceded, otherwise,
the filter, search and/or sort process will be slow.

To use fast access variables, the option Fast Access Variables in a
collection status (in the data base editor), must be checked, and the
fast access variables table columns must be defined. Each column
corresponds to an object variable. The access to the fast access variables
table is made by right click in the collection, and choosing the option
fast access variables.

To further optimizations, the fast access variables can be splitted in
several tables. To do so, the conditions for splitting must be defined,
by pressing the button "conditions" in the table editor, and filling
the conditions table.

procedure FINDINFT(wm:n; var colids,exprs,rowids:l; /mode,sort,msg,db:i; rows,sep:s)

Returns in ROWIDS the rows that fulfil the expression in EXPRS for each
column in COLIDS.

wm : Data base module

colids : Columns to be filtered.
Eg. colids:ls=('PRICE','SUPPLIER');

exprs : Expression to use for each column
Eg.: Exprs:ls=('rs(tc.1)>100;','tc.1='S001';');

rowids : Rows that had satisfied the expressions

mode : 1=AND (all columns must fulfill the expressions)
0=OR (only one column must fulfill the expression)

sort : 1=Sort, 0=Without sort

msg : 1= shows a message for each row (in the bottom-right corner)

Mirakon - Referenz R11 / 5.13.4 Fast access to objects da 91

db : Number of an external data base (opened with OPENDB)

rows : Columns to be returned in ROWIDS. If not indicated, only
the column NR will be returned.
Eg.: rows='NR|PRICE|SUPPLIER';

sep : Separator to be used when to return more than the column NR.
Used only when parameter ROWS is indicated. (default=#)

asle :

asls :

elid :

leid :

acid :

Example : colids:ls=('PRICE');
exprs:ls=('rs(tc.1)>100');
rows:s='SUPPLIER|PRICE|NR';
result:l;
findinft(PRODS,colids,exprs,result,sort=1,rows=rows);

/ returns the supplier, price and object nr for all object
/ were the price is bigger than 100, sorted by supp lier+price+nr

NR PRICE SUPPLIER QUANTITY

P01 100 S001 90

P02 120 S001 32

P03 50 S002 4

P04 200 S003 66

Mirakon - Referenz R11 / 5.13.4 Fast access to objects da 92

5.13.5

Fast access variables are object "key" variables, normally used to filter,
search and/or sort objects, so they need to be fast acceded, otherwise,
the filter, search and/or sort process will be slow.

To use fast access variables, the option Fast Access Variables in a
collection status (in the data base editor), must be checked, and the
fast access variables table columns must be defined. Each column
corresponds to an object variable. The access to the fast access variables
table is made by right click in the collection, and choosing the option
fast access variables.

To further optimizations, the fast access variables can be splitted in
several tables. To do so, the conditions for splitting must be defined,
by pressing the button "conditions" in the table editor, and filling
the conditions table.

procedure OPENQUERYTABLE (var qth:i; modid:n; tabid :s);

Opens the loader dialogue so the the user can select and load an
object from a data base into a variable. The loader allows also
creating, deleting, renaming and copying of objects.

qth :

modid : Data base module

tabid : Optional buttons:
Syntax: Button_name1:Procedure1, Button_name2:Procedure2,...

Example 1: loader(PROD,hp1,pr);

procedure HP1;
at L2:
 prname:=pr.nr+' '+pr.name;
 dspsf(D1);
at L3:
 if pr.status=2:
 begin
 inf('Deletion not allowed');
 dbok:=0;
 end;
at L5: /before the insertion of a new object
 lmask:=0;
 ournr,ourprefix,ourname:s='';
 mask(NEWPRODUCT,o=A);
 if escaped: dbok:=0&exit;
 failure:i=0;
 control(ournr,ourprefix,failure);
 if failure: dbok:=0&exit;
 dbkey:=ourprefix+'.'+ournr;
 dbname:=ourname;
 dbok:=1;

procedure NEWQUERYTABLE (var qth:i; tabid:s);

Opens the loader dialogue so the the user can select and load an
object from a data base into a variable. The loader allows also
creating, deleting, renaming and copying of objects.

Mirakon - Referenz R11 / 5.13.5 93

qth :

tabid : Optional buttons:
Syntax: Button_name1:Procedure1, Button_name2:Procedure2,...

Example 1: loader(PROD,hp1,pr);

procedure HP1;
at L2:
 prname:=pr.nr+' '+pr.name;
 dspsf(D1);
at L3:
 if pr.status=2:
 begin
 inf('Deletion not allowed');
 dbok:=0;
 end;
at L5: /before the insertion of a new object
 lmask:=0;
 ournr,ourprefix,ourname:s='';
 mask(NEWPRODUCT,o=A);
 if escaped: dbok:=0&exit;
 failure:i=0;
 control(ournr,ourprefix,failure);
 if failure: dbok:=0&exit;
 dbkey:=ourprefix+'.'+ournr;
 dbname:=ourname;
 dbok:=1;

procedure CLOSEQUERYTABLE (qth:i);

Opens the loader dialogue so the the user can select and load an
object from a data base into a variable. The loader allows also
creating, deleting, renaming and copying of objects.

qth :

Example 1: loader(PROD,hp1,pr);

procedure HP1;
at L2:
 prname:=pr.nr+' '+pr.name;
 dspsf(D1);
at L3:
 if pr.status=2:
 begin
 inf('Deletion not allowed');
 dbok:=0;
 end;
at L5: /before the insertion of a new object
 lmask:=0;
 ournr,ourprefix,ourname:s='';
 mask(NEWPRODUCT,o=A);
 if escaped: dbok:=0&exit;
 failure:i=0;
 control(ournr,ourprefix,failure);
 if failure: dbok:=0&exit;
 dbkey:=ourprefix+'.'+ournr;
 dbname:=ourname;

Mirakon - Referenz R11 / 5.13.5 94

 dbok:=1;

function NQTROWS (qth:i):a;

Returns the list of the last loaded objects from module WM.

qth : Number of an external data base (opened with OPENDB)

function NQTCOLS (qth:i):i;

Returns the list of the last loaded objects from module WM.

qth : Number of an external data base (opened with OPENDB)

procedure GETQUERYTABLE (qth1,qth2:i; colids,filter :ls; keys:s);

Opens the loader dialogue so the the user can select and load an
object from a data base into a variable. The loader allows also
creating, deleting, renaming and copying of objects.

qth1 :

qth2 :

colids : Data base module

filter : Optional buttons:
Syntax: Button_name1:Procedure1, Button_name2:Procedure2,...

keys :

Example 1: loader(PROD,hp1,pr);

procedure HP1;
at L2:
 prname:=pr.nr+' '+pr.name;
 dspsf(D1);
at L3:
 if pr.status=2:
 begin
 inf('Deletion not allowed');
 dbok:=0;
 end;
at L5: /before the insertion of a new object
 lmask:=0;
 ournr,ourprefix,ourname:s='';
 mask(NEWPRODUCT,o=A);
 if escaped: dbok:=0&exit;
 failure:i=0;
 control(ournr,ourprefix,failure);
 if failure: dbok:=0&exit;
 dbkey:=ourprefix+'.'+ournr;
 dbname:=ourname;
 dbok:=1;

procedure VIEWQT (qth:i);

Opens the loader dialogue so the the user can select and load an
object from a data base into a variable. The loader allows also
creating, deleting, renaming and copying of objects.

Mirakon - Referenz R11 / 5.13.5 95

qth :

procedure EXPQT2TXT (qth:i; var colids:ls; var txt: l; sep:s);

Opens the loader dialogue so the the user can select and load an
object from a data base into a variable. The loader allows also
creating, deleting, renaming and copying of objects.

qth :

colids : Data base module

txt : Optional buttons:
Syntax: Button_name1:Procedure1, Button_name2:Procedure2,...

sep :

procedure EXPQT2ST (qth:i; var colids:ls; var st:l; / grpid,grpenr:s; nss:i);

Opens the loader dialogue so the the user can select and load an
object from a data base into a variable. The loader allows also
creating, deleting, renaming and copying of objects.

qth :

colids : Data base module

st : Optional buttons:
Syntax: Button_name1:Procedure1, Button_name2:Procedure2,...

grpid :

grpenr :

nss :

procedure EXPQT2XLS (qth:i; var colids:ls; xlc,xlr: i);

Opens the loader dialogue so the the user can select and load an
object from a data base into a variable. The loader allows also
creating, deleting, renaming and copying of objects.

qth :

colids : Data base module

xlc : Optional buttons:
Syntax: Button_name1:Procedure1, Button_name2:Procedure2,...

xlr :

Example 1: loader(PROD,hp1,pr);

procedure HP1;
at L2:
 prname:=pr.nr+' '+pr.name;
 dspsf(D1);
at L3:
 if pr.status=2:
 begin
 inf('Deletion not allowed');
 dbok:=0;
 end;
at L5: /before the insertion of a new object
 lmask:=0;
 ournr,ourprefix,ourname:s='';
 mask(NEWPRODUCT,o=A);

Mirakon - Referenz R11 / 5.13.5 96

 if escaped: dbok:=0&exit;
 failure:i=0;
 control(ournr,ourprefix,failure);
 if failure: dbok:=0&exit;
 dbkey:=ourprefix+'.'+ournr;
 dbname:=ourname;
 dbok:=1;

procedure EXPLORER (wm:n; var obj:l; /colst,st0,idx ,o,hp:n; ti,b:s; us:i);

Opens the loader dialogue so the the user can select and load an
object from a data base into a variable. The loader allows also
creating, deleting, renaming and copying of objects.

wm : Data base module

obj :

hp : Handler procedure: this procedure defines a specific behaviour
in the different loader situations L1, L2, L3, etc..
By setting DBOK:=0 the loading or the deletion are prevented.

o : Options: Sequence of letters with the following meaning:

A: Automatic allocation of numbers. When the user wants to insert
 a product, the number field of the insertion dialogue will
 contain the content of the variable DBKEY0.

G + number: With button "Generate" for automatic allocation
 of numbers. When this button is pressed, the program looks
 for a new number, consisting of the existing prefix in the
 number field and the smallest number sequence with as many
 digits as the number in the G option. This new number appears
 in the number field.

J: Automatic jump to the insert mask, without the user having to
 press the INSERT key/button.

H + number: Certain standard buttons do not appear:
 H1: INSERT button (i.e. the user cannot insert an object)
 H2: DELETE button (i.e. the user cannot delete an object)
 H3: RENAME button (i.e. the user cannot rename an object)
 H4: COPY button (i.e. the user cannot copy an object)
 H6: FILTER button (i.e. the user cannot filter)
 H7: LOAD button (i.e. the user cannot load an object)
 H0: All standard buttons (H1 to H7)

M: Automatic jump to the ok button in the insert mask,
 without the user having to press the enter key twice.

O: With ARCHIVE-button.

P: With RESTORE-button.

Q: Enables export/import of external objects (OBJ-Files)

R: Keeps the last position in group index.

S: Allows the input of the object number.

Mirakon - Referenz R11 / 5.13.5 97

T: With TRANSFER-button,allowing objects to be transfered
 between 2 data bases.

U: Object will not be locked after beeing loaded.

X: The index prefix does not appears in the number input field
 but in a separate display field.

W + number: Width of the index menu (default = 28).
 If you enter W0, the index does not appear.

Z: Index menu without the option "ALL"

st0 : Procedure with the definition of the initial structure

idx : Table with data base module group index

colst : Sorting table

ti : Title for the loader window.

b : Optional buttons:
Syntax: Button_name1:Procedure1, Button_name2:Procedure2,...

us :

Example 1: loader(PROD,hp1,pr);

procedure HP1;
at L2:
 prname:=pr.nr+' '+pr.name;
 dspsf(D1);
at L3:
 if pr.status=2:
 begin
 inf('Deletion not allowed');
 dbok:=0;
 end;
at L5: /before the insertion of a new object
 lmask:=0;
 ournr,ourprefix,ourname:s='';
 mask(NEWPRODUCT,o=A);
 if escaped: dbok:=0&exit;
 failure:i=0;
 control(ournr,ourprefix,failure);
 if failure: dbok:=0&exit;
 dbkey:=ourprefix+'.'+ournr;
 dbname:=ourname;
 dbok:=1;

NR PRICE SUPPLIER QUANTITY

P01 100 S001 90

P02 120 S001 32

P03 50 S002 4

P04 200 S003 66

procedure QUERY (var sql,result:l; /qt,qtdest:i);

Sends an SQL inquiry string (CODE) and receives the result in RES.

SQL :

Mirakon - Referenz R11 / 5.13.5 98

RESULT :

QTDEST :

QT :

Example : result:l;
sqlodbc('SELECT NAME, AGE FROM PERSONAL',result);

Mirakon - Referenz R11 / 5.13.5 99

5.14 Dialog control

Variables for dialog control

fid s identifier of the selected field

stageid i identifier of the current dialogue window
(assigned by the author in EDITG, EDITST or EDITPLAN);

fchanged i this variable informs whether the deselected dialog field
was changed (fchanged=1) or not (fchanged=0)

jumpfok i setting this variable to 0, in the dialog field commands,
causes the cursor to remain in the same field

okayed i becomes 1 if the user presses the OK button leaving a
dialogue mask, otherwise OKAYED remains 0

escaped i becomes 1 if the user abandons a dialogue mask with the ESC-key
otherwise ESCAPED remains 0

exitok i when set to 0, in the dialogue finalisation, prevents
Mirakon from closing the dialogue mask (default = 1)

xlfa r x-left-coordinate of the last selected field

xrfa r x-right-coordinate of the last selected field

ytfa r y-top-coordinate of the last selected field

ybfa r y-bottom-coordinate of the last selected field

infmode i 1 = informations appear interrupting the application
2 = informations are written in INFL and the application is
 not interrupted

infl l information container when INFMODE=2

5.14.1 Cursor, keyboard, speaker

procedure SETCURSOR (mode:i);

Changes the cursor form.

mode : Cursor form: 1=normal 2=Hourglass

Example : setcursor(2); dosomething; setcursor(1);

procedure BEEP;

Makes a BEEP sound over the PC speaker.

function INPUTKEY:i;

Returns the value of the last key pressed (ANSI-Code).

Key values:
 Back=8, Tab=9, Home=371, End=379, PgUp=373, PgDn=381, Enter=13, Esc=27,
 Left=375, Del=383, Right=377, Ins=382, BTab=315, Up=372, Down=380,
 F1..F10=359..368, Shift-F1..Shift-F10=384..393

Example : if inputkey=27:exit;

Mirakon - Referenz R11 / 5.14.1 Cursor, keyboard, speaker 100

5.14.2 Showing informations

procedure OPENMSG (s1,s2:s; /cm,wait:i);

Opens a message box with two text lines s1 and s2 on the right bottom corner
of the screen.

s1 : first line

s2 : second line

cm : changes the cursor form: 1:normal 2:hourglass

wait : waits 1/100-seconds

Example : openmsg('Document is to be build',cm=2,wait=50);

procedure CLOSEMSG;

Closes a message box.

procedure INF (s:s; /z,pos:i);

Shows an information box with the text S and an OK button.

s : Information text

z : With Z you can use a standard Sufix :
1 = ' does not exist '
2 = ' already exist!'
3 = ' not valid!'
4 = ' not compatible!'
5 = ' not allowed!'

pos : box position: 1=top left, 2=bottom right (default) 3=center

Example : x:r=a+b; pnr:s='123456';
inf('X='+sr(x,2));
if x>1200:inf('Weight to high !');
inf('Product '+pnr,z=1);

procedure INFV (v:n; /bars,pos:i; w,h:r);

Informs the value of the indicated variable V.
If bars=1 is indicated, the storage space (in bytes) is shown
as a grafic bar, for all sub-positions.

v : Variable name

bars : bars=1 shows a diagram of the memory consumption of
the individual positions

pos : infv position: 1=top left, 2=bottom right (default) 3=center

w : window width in text characters

h : window height in text lines

Example : x:r=a+b; infv(x);
load(mod1,'123',obj);
infv(obj,bars=1,w=50,h=20);

procedure OPENREPORT (t:s; /w,h:r);

Opens a report window where you can write text lines
using the procedure REPORT.

t : Window title

Mirakon - Referenz R11 / 5.14.2 Showing informations 101

w : Window width in text units

h : Window height in text units

Example : openreport('Protocol');

procedure REPORT (dr,c:i; s:s; /w:i);

Writes a text line in the opened report window.

dr : Line jump, related to the last written line

c : Column position

s : Text line

w : Waiting period in 0,01 seconds

Example : report(1,3,'Product '+p.nr,w=50);

procedure CLOSEREPORT;

Closes the opened report window.

5.14.3 Handling of dialog fields

procedure DSPF (/);

Redraws the indicated dialog fields of the current dialogue mask.

Example : dspf(A1,A2,B1,C1);

procedure DSPSF (ID:N);

Redraws the indicated dialog field of the status surface.

ID : Field identifier

Example : dspf(D1);

procedure SELF (ID:N);

Selects the indicated dialog field, cause the cursor to jump there.
The standard fields OK and ABANDON can be selected with the id ZOK and/or ZESC.

ID : Field identifier

Example :
procedure JUMPF (J:I);

Jumps to another field.

J : Number of the destiny field

Example : jumpf(1); /jumps to next field
jumpf(-1); /jumps to the previous field

procedure DELF (id:n);

Deletes the indicated dialog field or grafic element.
ID can also be a filter.

id : Identifier or filter

Example : delf(A1); delf(B_);

Mirakon - Referenz R11 / 5.14.3 Handling of dialog fields 102

procedure SETF (id:n; stat:i; /bc,fc:i);

Changes the status of the dialog fields or grafic elements in the
current dialogue. ID can also be a filter.

id : Field identifier or filter

stat : Status value:
1=normal;
2=locked: appears in grey and cannot be selected;
4=invisible: does not appear;

bc :

fc :

Example : setf(A_,2);
/all field with ID starting with A are locked

procedure SETFCOL (id:n; bcol,fcol:i; /pbcol,pfcol: i);

Changes the colors of a dialog field.

id : Identifier of the field (can also be a filter).

bcol : Background color

fcol : Text color

pbcol : Background color in locked status

pfcol : Text color in locked status;

Example : setfcol(A_,3,0,pbcol=5);

procedure RSETF (id:n; /path:s; var lo:l);

Rebuilds a dialog field. This is necessary if the structure of a field
(lister, menu or structure editor) changes. If ID is not indicated,
the selected field is rebuilded.

id : Field ID

path : new structure position (in EDITST)

lo : menu options list; must be indicated when the options list
of a menu field has been changed.

Example : menu1:ls=('Option1','Option2 new')
rsetf(M1,lo=menu1);

procedure SETTIP (id:s; tips:ls);

Assigns a Windows tip to the field ID. Purpose: If the user stays with
the mouse stopped over a field for one second, a window appears with
additional information.

id : Field ID

tips : Information text

Example : info:ls=('This field','means ...');
settip(A1,info);

5.14.4 Handling of dialogue masks

Mirakon - Referenz R11 / 5.14.4 Handling of dialogue mask 103

procedure MASK (id:n; /ok,o,vl:n; mode,nr:i);

Opens a dialogue mask and starts a dialogue with the user. A dialogue mask
can also contain several pages. This opens one register for each page in the
top of the dialogue.

id : Dialogue mask ID

ok : Procedure that is called, when the OK key is pressed

o : Options: N=without OK button; A=with ABANDON button

vl : Visible Layers

mode : work mode: 1=Fields of other masks cannot be selected

nr : page NR (if the dialogue mask has several pages)

Example : mask(DATA,ok=controldata,mode=1,o=A);

procedure OPENSTAT (id:n);

Opens a status mask on the top-left surface of the application.

id : Dialogue mask ID

Example : openstat(STAT);

procedure OPENMAIN (xl,yt,w,h:r; id:n);

Opens a main menu in the application surface.

xl : X-left-coordinate of the menu (text units) in the work surface

yt : Y-top-coordinate of the menu (negative value!) in text units;
The program ensures that the status surface is not covered;

w : Width of the menu field (in text units);

h : Height of the menu field (in text units);

id : Main menu table

Example : openmain(1,-3,30,40,MAIN);

procedure OPENTABS (p:i; x,y:r; t:s; id:n);

Openas a register menu in the application surface.

p : Positioning:
0: fills the entire work surface (recommended value);
 In this case the parameters X and Y do not have influence;
1: Centered in the work surface:
 X: left margin = right margin (in text units)
 Y: top margin = lower margin (in text units)
2: Centered in the work surface:
 X: Width (in text units)
 Y: Height (in text units) A
7: Bound to the right bottom corner of the work surface;
 X: X-left coordinate (in text units);
 Y: Y-top coordinate, negative value! (in text units);

x : Data for positioning: margin or width

y : Data for positioning: margin or height

t : Title for the register menu; appears left on the top;

id : ID of the table containing the register options

Example : opentabs(0,0,0,'',MAIN);
opentabs(7,0,-3,'Main menu',MAIN);

Mirakon - Referenz R11 / 5.14.4 Handling of dialogue mask 104

procedure RSETM (id:n);

Rebuilds the dialogue window ID. This is necessary if the addresses or values
of the shown variables are changed. If ID is not indicated, the selected window
is rebuilded.

id : Dialog mask ID

Example : rsetm(MAIN);

procedure SELM (id:n; /fnr:i);

Selects a dialogue window.

id : Dialogue mask ID

fnr : Field to be selected (optional);

Example : selm(MAIN,fnr=2);

procedure DELM (id:n);

Deletes the indicated dialogue window.

Example : delm(MAIN);

procedure SETML (layer,mode:i; /fnr,rset:i);

Sets a layer visible or invisible in the active dialogue mask.

layer : Layer number

mode : 0:invisible; 1:visible;

fnr :

rset :

Example : setml(2,1);

procedure SECDATA (/);

Allows to secure data in the opening of a mask. This command is called in the
initialization of the mask and causes the appearance of a RESET button
(beside the OK button). This button allows the user, after having changed data,
to restore the original situation.

/ : Variables to secure (separated with comma)

Example : secdata(p,v1);
/secures all actual parameters and the variable V1

5.14.5 Standard Dialogues

procedure ASK (t:s; var txt:ls; but:s; var a:i);

Opens a dialogue mask with a question and the respective answers as buttons.
When the user presses a button, Mirakon returns in A the number of the pressed
button. The dialogue mask appears in center of the screen.

t : Title of the dialogue mask

txt : Text in dialogue mask (list of strings)

but : Button texts (separated with comma)

a : Variable that receives the answer (button number);

Example : answer:i;
txt:ls=('Do you want','to delete ?');

Mirakon - Referenz R11 / 5.14.5 Standard Dialogues 105

ask('Question',txt,'Yes,No',answer);
if answer=2: exit; / if NO aborts

procedure SELID (var id:s; var opts:l; t:s; xl,yt,w ,h:r);

Openas a dialogue mask with a menu, lets the user select an option
and returns the answer in the variable ID.

id : Variable that receives the answer

opts : List of the options (list of strings)

t : Title of the dialogue mask

xl : X-Left-position of the dialogue mask in text units

yt : Y-Top-position of the dialogue mask in text units

w : Width of the dialogue mask in text units

h : Height of the dialogue mask in text units

Example : answer:s;
options:ls=(B='Big',M='Medium',S='Small');
selid(answer,options,'Size',20,-5,20,6);
if answer='B': inf('Big was selected !');

procedure CHOOSEFILE (var fp:s; sp:s);

Start the Windows dialogue to select a file;

fp : Variable that receives the selected file path

sp : Initial path

Example : file:s; choosefile(file,'C:\MIRAKON');

procedure CHOOSEFOLDER (var dir:s);

Start the Windows dialogue to select a folder;

dir : Variable that indicates the initial path and receives
the selected path

Example : folder:s='C:\MIRAKON';
choosefolder(folder);

procedure SAVEFILE (var fn:s; /ltxt:ls);

Start a Windows dialogue to save a file.

fn : Variable that indicates the initial file path
and returns the selected file path

ltxt : Text to be stores in the selected file (optional)

Example : file:s='c:\mirakon\new.txt';
savefile(file);

procedure CHOOSEKEY(wm,fid:n; var key:s; /o,sp,idx, flt,st:n;gf,of,b,ti:s;w,h:r;db:i)

Opens the loader dialogue allowing the user to select an object from a data base.
In contrast to the LOADER only the number of selected object is loaded.
Parameters O, SP, IDX, FLT, ST, GF, OF, TI, B, DB are equal as in LOADER.
The system variable DBKEY informs about the selected object number.
(if needed you can build programmable buttons in the parameter B).

wm : Data base module

fid : If FID contains a dialog field ID, that dialog field is redrawn

Mirakon - Referenz R11 / 5.14.5 Standard Dialogues 106

key : Variable that receives the selected object number

w : Window width in text units (Default=65)

h : Window height in text units (Default=22)

Example : pnr:s; choosekey(PROD,,pnr,o=W35,w=75);

procedure CHOOSEKEYL(wm:n; var keys:l; /o,sp,idx,fl t,st:n;gf,of,b,ti:s;w,h:r;db:i)

Functions analog as CHOOSEKEY, it returns however a list of the numbers
of those objects marked by the user.

wm : Data base module

keys : List that receives the list of marked object numbers

Example : lnr:ls; choosekeyl(PROD,lnr);

procedure ASKME (var m:e; tab,as:n; t1,q1:s);

Opens a dialogue mask for the master selection and parameter input.

m : The selected master element

tab : Table with all existing masters

as : Active situation during the master choice

t1 : Title for the dialogue mask

q1 : Text appearing left from the master menu

Example : askme(pr.pm,PR,PRE,'Specifications','Product master ');

5.14.6 Programmable Dialogue

procedure OPENDIALOG (x,y,w,h:r; t:s; cb:i);

Opens a dialogue window (without ok button).

x : X-coordinate of the left edge of the window in text units

y : Y-coordinate of the upper edge of the window in text units
(always a negative value!)

w : Window width in text units

h : Window height in text units

t : Title of the window

cb : Background color

Example : opendialog(10,-8,30,10,'Input',3);
/...openstring, openquestion, etc.
rundialog(ok=closedialog);

procedure RUNDIALOG (/ok:n);

Starts a dialogue opened with OPENDIALOG.

ok : Procedure to be called when the OK button is pressed.

procedure CLOSEDIALOG;

Closes the current dialogue window;

Mirakon - Referenz R11 / 5.14.6 Programmable Dialogue 107

procedure OPENSTRING (x,y:r; s:s; /color,font,size, bold,ital,adj:i);

Draws a text line in the dialogue window, opened with OPENDIALOG.

x : X-coordinate of the text line in mm

y : Y-coordinate of the text line in mm

s : Text line

color : Color number (default 0)

font : Font number (default 2)

size : Font size in points (default 12)

bold : Font width: 0:normal 1:bold (default 1)

ital : Font style: 0:normal 1:italic (default 0)

adj : Adjustment: 1:left, 2:right, 3:midle (default 1)

Example : openstring(2,-1,'Input',color=3,font=5,size=20);

procedure OPENGRAFIC (var g:l; x,y:r; /id:n);

Draws a grafic in the opened dialogue window.

g : Grafic

x : X-coordinate of the upper left corner in mm

y : Y-coordinate of the upper left corner in mm

id : Identifier of the grafic in the dialogue mask (optional);

procedure OPENDISPLAY (id:n; x,y,w,h:r; v:n; f:i);

Opens a display field in the opened dialogue window.

id : Field Identifier

x : X-coordinate of the left edge of the field in mm

y : Y-coordinate of the upper edge of the field in mm

w : Field width in text units

h : Field height in text units

v : Name of the variable to be shown

f : Display format: depending upon type: Decimal places or date format

Example : opendisplay(A1,15,-2,8,1,value1,3);

procedure OPENCHECKBOX (id:n; x,y:r; t:s; v:n; /p:n);

Openas a checkbox field in the dialogue window opened with OPENDIALOG.

id : Field Identifier

x : X-coordinate of the left edge of the field in mm

y : Y-coordinate of the upper edge of the field in mm

t : Text line; appears on the right of the field;

v : Name of the variable to be asked

p : Procedure that is called when leaving the field

Example : opencheckbox(A1,15,-2,'With border',o1);

procedure OPENQUESTION (id:n; x,y,w:r; v:n; f:i; /p :n);

Opens a question field in the dialogue window opened with OPENDIALOG.

id : Field Identifier

Mirakon - Referenz R11 / 5.14.6 Programmable Dialogue 108

x : X-coordinate of the left edge of the field in mm

y : Y-coordinate of the upper edge of the field in mm

w : Width of the field in text units

v : Name of the variable to be asked

f : Display format: depending upon type: Decimal places or date format

p : Procedure that is called when leaving the field

Example : openquestion(A2,15,-2,8,value1,3,p=controlvalue1);

procedure OPENBUTTON (id:n; x,y,w,h:r; t:s; p:n);

Opens a button field in the dialogue window opened with OPENDIALOG.

id : Field identifier

x : X-coordinate of the left edge of the field in mm

y : Y-coordinate of the upper edge of the field in mm

w : Field width in mm

h : Field height in mm

t : Text that appears in the button center

p : Procedure that is called, when the button is pressed

Example : openbutton(B1,10,-6,20,2,'Calculate',calcvalue1);

procedure OPENSELECTOR (id:n; x,y,w:r; v:n; var opt s:l; p:n);

Opens a selector field in the dialogue window opened with OPENDIALOG.

id : Field Identifier

x : X-coordinate of the left edge of the field in mm

y : Y-coordinate of the upper edge of the field in mm

w : Width of the field in text units

v : Name of the variable to be asked

opts : List of the selector options

p : Procedure that is called when leaving the field

Example : l1:ls=('Light','Normal','Eavy');
openselector(M1,10,-4,20,answer,l1);

procedure OPENMENU (id:n; x,y,w,h:r; v:n; var opts: l; p:n);

Opens a menu field in the dialogue window opened with OPENDIALOG.

id : Field Identifier

x : X-coordinate of the left edge of the field in mm

y : Y-coordinate of the upper edge of the field in mm

w : Width of the field in text units

h : Height of the field in text units

v : Name of the variable to be asked

opts : List of the menu options

p : Procedure that is called when leaving the field

Example : l1:ls=('Light','Normal','Eavy');
openmenu(M1,10,-4,40,12,answer,l1);

Mirakon - Referenz R11 / 5.14.6 Programmable Dialogue 109

procedure OPENCOMBO (id:n; x,y,w,h:r; v:n; var opts :l; /p:n);

Opens a combobox field in the dialogue window opened with OPENDIALOG.

id : Field Identifier

x : X-coordinate of the left edge of the field in mm

y : Y-coordinate of the upper edge of the field in mm

w : Width of the field in text units

h : Height of the field in text units

v : Name of the variable to be asked

opts : List of the combobox options

p : Procedure that is called when leaving the field

Example : l1:ls=('Light','Normal','Eavy');
opencombo(M1,10,-4,40,12,answer,l1,p=control01);

procedure OPENEDITOR (id:n; x,y,w,h:r; var txt:l; / l:i);

Opens a text editor field in the dialogue window opened with OPENDIALOG.

id : Field Identifier

x : X-coordinate of the left edge of the field in mm

y : Y-coordinate of the upper edge of the field in mm

w : Width of the field in text units

h : Height of the field in text units

txt : Text to be edited

l : Maximal length of one text line

Example : openeditor(E1,15,-2,8,1,value1,l=40);

5.14.7 Selfrunning demos

procedure INPUT (/);

Adds keyboard entries or commands into the input buffer
(for self running demos).

Instructions:

K + Number : Keyboard entry: Number=key code

B + Name : Calls a mask

P + Number : Sets the general break between keys pressing
Number in 0.01-Seconds

W + Number : Inserts an unique break; Number in 0.01-Seconds

'text' : Inserts text input from the keyboard

M(x,y) : Moves the mouse to X,Y in pixels

L : Left mouse button is pressed

R : Right mouse button is pressed

Example : input(K13,'ABC',W100,BM02);

NR NAME WERT
0 Back 8

1 Tab 9

2 Enter 13

3 Escape 27

4 Btab 315

5 Cursor Down 380

Mirakon - Referenz R11 / 5.14.7 Selfrunning demos 110

5.15 Configuration

procedure GETFILEPARS (id:n; /var file:s);

Returns information (file path) about a configured data base.

id : Data base ID as it is indicated in the configuration

file : Variable that receives the file path

Example : file:s;
getfilepars(DAT,file=file);
if exfile(file)=0: inf(file+' not found');

procedure SETFILEPARS (id:n; /file:s; accmode:i);

Changes the file paths and/or access mode of a configured data base.
This command can be called at the user login, (in the configuration, on the
user code, the situation AT LOGIN) in order to change the data bases
according to users.

id : Data base ID as it is indicated in the configuration

file : File path

accmode : Access mode:
1 = direct (via client)
2 = via server (only for Client/Server version)

Example : / in User-CODE
at LOGIN:
localdat:s='C:\MIRAKON\MYDATA.DAT';
setfilepars(DAT,file=localdat,accmode=1);

procedure GETDBASES (var dbs:l);

Returns the configured data base parameters in DBS (list of elements):

Data base ID in: files.[i].id
Data base path in: files.[i].pars.fname
Access mode in: files.[i].pars.accmode
Data base number in: files.[i].pars.dbnr

Example : dbs:l;
getdbases(dbs);
travel dbs:
 begin
 if exfile(p.fname)=0:
 inf('Data base'+pe^.id+' not found');
 end;

function LISTUSERS(/filt:s; ulevel,active:i):l

Returns the list of users.

filt : User id filter

ulevel : User level filter
 1:User
 2:Author
 3:Administrator

active : When 1 only returns the active (logged) users

Example : l1:l=listusers(ulevel=3); /returns all administrato rs

Mirakon - Referenz R11 / 5.15 Configuration 111

procedure GETUPERMS(uid:s; var uperms:l)

Returns in UPERMS the permissions of user UID.

procedure GETUSERS (var users:l);

Reads the users list from the configuration data into the variable USERS.
This command may only be executed by administrators.

users : List that receives the configuration data

Example : users:l;
getusers(users);
infv(users);

procedure SAVEUSERS (var users:l);

Saves the configuration data (users list) from the variable USERS.
This command may only be executed by administrators.

users : List that contains the configuration data (users list).

Example : saveusers(users);

procedure SAVEUSER;

Saves the actual user object with last user settings.

procedure GETLFC (var lfcs:ls; /form:i)

Returns the list of calendars from the configuration.

lfcs : Variable that receives the list of calendars.

form : Result format:
 0 = calendar Identifier (Default)
 1 = calendar Identifier + ' | ' + calendar description.
 2 = calendar description

Example : lfc:ls; getlfc(lfc,form=2);

procedure GETFC(id:s; var fc:l)

Returns the calendar ID in the list FC.

Example : fc:l; getfc('ALLG',fc);

procedure GETSTARTMENU(var sm:l)

Returns the start menu list from the configuration in the variable SM.

procedure SAVEUNITSTAB

Saves the units table, in the system variable UNITSTAB, into the configuration.

procedure GETFONTS(var fnts:l)

Returns the list of fonts from the configuration.

Mirakon - Referenz R11 / 5.15 Configuration 112

5.16 Printer

procedure PRINT (mode:i; var doc:l);

Prints the document DOC.

mode : 1:Text 2:Grafic

doc : Document

Example : print(2,gdoc);

procedure SETPRINTER (/lm,rm,tm,bm:r; sc,size,scale ,copies,orient,psource:i; pname,doc:s);

Sets printer parameters.

lm : Left margin in mm

rm : Right margin in mm

tm : Top margin in mm

bm : Bottom margin in mm

sc : Automatic scaling: 1:On 0:Off

size : Paper size: 1=A4; 2=A3;

scale : Scaling in % (default 100)

copies : Number of copies

orient : Paper adjustment: 1=Portrait; 2=Landscape;

psource : Paper source number: 1=Auto 2=Cassette 3=Envelope
4=Env. manual 5=Formsource 6=Large capacity
7=LargeFmt 8=Lower 9=Manual 10=Middle 11=Onlyone
12=tractor 13=smallFmt

pname : Printer designation, as it is defined in Windows

doc : Document name

Example : setprinter(size=2,scale=50,pname='HP Laserjet 5P');

procedure GETPRINTER (/var lm,rm,tm,bm:r; var sc,si ze,scale,copies,orient,psource:i; var pname,
doc:s);

Gets the printer parameters.
Parameters are the same as in SETPRINTER.

Example : pn:s;
getprinter(pname=pn);
inf('The actual printer is'+pn);

5.17 Interfaces

5.17.1 Import images

You can import BMP, JPEG, ICO and TIFF image files into the grafic editor.

Procedure:
1) select the option import/from a file from the main menu.
2) select a file with BMP, JPG, ICO or TIFF extension.
3) position the square frame of the picture with the mouse at the desired position and
 click the left mouse button. If the picture is too large for the grafic, you should
 first zoom the grafic.

Mirakon - Referenz R11 / 5.17.1 Import images 113

5.17.2 Files read and write

Variable for reading from external files

TFS s File section in TRAVELF

TFP a File position in TRAVELF

procedure READTEXT (file:s; var text:ls);

Opens a text file and writes its contents in a list.

file : Text file (path + name)

text : Variable that receives the text

Example : data:ls; readtext('IMPORT.TXT',data);

procedure WRITETEXT (file:s; var text:ls);

Writes a text in a text file.

file : Text file (path + file name)

text : List with the text lines.

Example : writetext('EXPORT.TXT',data);

procedure MAKEF (file:s; size:a);

Creates a file and fills it with blank characters.

file : File (path + name)

size : Number of blank characters

Example : makef('DATA.DAT',512);

procedure OPENF (var f:i; file:s);

Opens a file (of any type) and writes the assigned file number (handle)
in the variable F.

f : Variable that receives the file number

file : File (path + name

Example : f1:i; openf(f1,'c:\temp\DATA.DAT');

procedure CLOSEF (f:i);

Closes the file indicated by F.

f : File number (returned by OPENF command)

Example : closef(f1);

procedure READFS (f:i; pos:a; n:i; var s:s; /c:i);

Reads the a number of bytes from one file, starting at a given position.

f : File number (returned by OPENF command)

pos : Start position for reading from the file
Important: The first position is 1, not 0

n : Number of byte to be read

s : Variable that receives the characters read

c : String clearing:

Mirakon - Referenz R11 / 5.17.2 Files read and write 114

0: removes all blanks from S;
1: removes all blanks on the left side;
2: removes all blanks on the right side;
3: removes all blanks on the left and right side;

Example : name1:s; readfs(f1,1250,20,name1,c=3);

procedure READFI (f:i; pos:a; n:i; var i:i);

Reads a number of bytes, starting at the given position, from one file,
and interprets it as an integer value.

f : File number (returned by OPENF command)

pos : Start position for reading from the file
Important: The first position is 1, not 0

n : Number of byte to be read

i : Variable that receives the number read

Example : v1:i; readfi(f1,1250,20,v1);

procedure READFR (f:i; pos:a; n:i; var r:r);

Reads a number of bytes, starting at a given position, from one file,
and interprets it as an real value.

f : File number (returned by OPENF command)

pos : Start position for reading from the file
Important: The first position is 1, not 0

n : Number of byte to be read

r : Variable that receives the number read

Example : v1:r; readfr(f1,1250,20,v1);

procedure READFD (f:i; pos:a; n:i; var d:d);

Reads a number of bytes, starting at a given position, from one file,
and interprets it as a date-value.

f : File number (returned by OPENF command)

pos : Start position for reading from the file
Important: The first position is 1, not 0

n : Number of byte to be read

d : Variable that receives the date read

Example : d1:d; readfd(f1,1250,20,d1);

procedure WRITEFS (f:i; pos:a; n:i; s:s);

Writes a number of bytes starting from a position into a file.

f : File number (returned by OPENF command)

pos : Start position for writing into the file
Important: The first position is 1, not 0

n : Number of byte to be written

s : Variable that contains the characters to be written

Example : writefs(f1,1250,3,'ABC');

Mirakon - Referenz R11 / 5.17.2 Files read and write 115

procedure FINDFSEQ (f:i; headl,sepl,recl,keyp:i; ke y:s; var recp:a);

Searches for a data record in a sequential file.

f : File number (returned by OPENF command)

headl : File header length in bytes

sepl : Separator length in bytes

recl : Data record length in bytes

keyp : Key position

key : Searched record primary key

recp : Variabel that receives the found position.
If RECP=0 the key was not found;

Example : recpos:a; name1:s; f:i;
openf(f,'TEST.DAT');
findfseq(f,128,2,730,1,'A007X',recpos);
readfs(f,recpos+12,20,name1);

5.17.3 ODBC- interface

With the following procedures data can be read and/or written directly
from/to ODBC compatible data bases (ACCESS, Excel, Oracle, and so on)
without interference of the owner program.

Conditions for the functioning of the interface:

1. ODBC driver manager (Microsoft program) must be present.

2. ODBC driver for the respective data base must be available and
installed. This is normally supplied by the data base creator
and installed on your computer.

3. The data base to which you would like to access must be announced
as a data source. You can set this with the ODBC Admnistrator
(Microsoft program). The data source name assigned by you is
later used.

Applications examples:

Example 1: / inquires which drivers + data sources
/ are installed

info:l;
openodbc;
infodbc(info);
editlst(info,'INFO');
closeodbc;

Example 2: / inquires what tables are installed in the
/ data source D1

tabs:l;
openodbc;
connectodbc('DSN=D1');
tabsodbc(tabs);
editlst(tabs,'Tables');
disconnectodbc;
closeodbc;

Example 3: / executes an SQL inquiry:

Mirakon - Referenz R11 / 5.17.3 ODBC- interface 116

/ names and age of all coworker from
/ the table PERSONAL from the data source COMPANYDA TA.

sql:s='SELECT NAME, AGE FROM PERSONS';
result:l;
openodbc;
connectodbc('DSN=COMPANYDATA');
sqlodbc(sql,result);
editlst(result,'SQL Result');
disconnectodbc;
closeodbc;

Example 4: / questions a value withou having to
/ write an SQL inquiry: Age of Lisa Simpson

age:r;
openodbc;
connectodbc('DSN=COMPANYDATA');
getvalodbc(PERSONAL,AGE,NAME,'Lisa Simpson',age);
infv(age);
disconnectodbc;
closeodbc;

procedure OPENODBC;

Initializes the ODBC interface system.

procedure CLOSEODBC;

Terminates the ODBC interface system.

procedure INFODBC (var info:l);

Writes in the list INFO all installed ODBC drivers and data sources.

procedure CONNECTODBC (code:s);

Establishes a connection to a data source.
In CODE the data source name be indicated with 'DSN='.
Optionally the user ID (UID) and/or password (PWD) can be indicated.

Example : connectodbc('DSN=ADRESSES')
connectodbc('DSN=SOURCE1;UID=USR;PWD=XY')

procedure DISCONNECTODBC;

Closes the active connection to a data source.

procedure SQLODBC (code:s; var res:l);

Sends an SQL inquiry string (CODE) and receives the result in RES.

Example : result:l;
sqlodbc('SELECT NAME, AGE FROM PERSONAL',result);

procedure GETVALODBC (tabid,colid,keyid:n; key:s; v arid:n);

Reads a value from a table.

tabid : Table ID

Mirakon - Referenz R11 / 5.17.3 ODBC- interface 117

colid : Column containing the value searched

keyid : Column containing the search criteria

key : Value of the search criteria word

varid : Variable that receives the value found

Example : getvalodbc(PERSONAL,AGE,NAME,'Lisa Simpson',age);
infv(age);

procedure TABSODBC (var tabs:l);

Writes in list TABS the list of tables of the connected data sources.

5.17.4 ODBC- interface

With the following procedures data can be read and/or written directly
from/to ODBC compatible data bases (ACCESS, Excel, Oracle, and so on)
without interference of the owner program.

Applications examples:

procedure CONNECTADODB (dbpath:s; /passw,server,use r:s; xlfirstl:i);

Establishes a connection to a data source.
In CODE the data source name be indicated with 'DSN='.
Optionally the user ID (UID) and/or password (PWD) can be indicated.

dbpath :

passw :

server :

user :

xlfirst :

procedure DISCONNECTADODB;

Closes the active connection to a data source.

procedure RUNADODBSQL (var sql:l; var res:l; /fmt:i);

Sends an SQL inquiry string (CODE) and receives the result in RES.

sql :

res :

fmt :

procedure GETADODBTABLES (var tabs:l);

Writes in list TABS the list of tables of the connected data sources.

procedure READXLFILE (fname:s; var res:l; /line1:i) ;

Sends an SQL inquiry string (CODE) and receives the result in RES.

fname :

res :

line1 :

Mirakon - Referenz R11 / 5.17.4 ODBC- interface 118

Example : data:ls; readtext('IMPORT.TXT',data);

5.17.5 Excel-Interface

Example :
procedure OPENEXCEL (file:s; /wbtmp:s);

file :

wbtmp :

procedure CLOSEEXCEL (save:i);

save :

procedure EXCELVISIBLE (vis:i);

vis :

procedure CELLS (/);

R + Zahl :

C + Zahl :

S + String :

M :

N1 :

N2 :

GR :

GC :

L + Name :

V + Name :

E + String :

W + Zahl :

WA :

H + Zahl :

AH + Zahl :

AV + Zahl :

IC + Zahl :

IR(r,g,b) :

BI + Zahl :

BC + Zahl :

BR(r,g,b) :

BS + Zahl :

TF + Zahl :

TH + Zahl :

TW + Zahl :

TS + Zahl :

TC + Zahl :

TR(r,g,b) :

TO + Zahl :

Mirakon - Referenz R11 / 5.17.5 Excel-Interface 119

TI + Zahl :

Fxyz :

F + String :

X + String :

K0 :

DR :

DC :

UC :

UX :

UP :

OA :

OF + 0/1 :

OOR + 0/1 :

OOX + 0/1 :

procedure ACTIVATECELL (r,c:i);

r :

c :

Example :
procedure SETWORKSHEET (/wsnr:i; wsname:s; var retn r:i; var retname:s; var vis:i);

wsnr :

wsname :

retnr :

retname :

vis :

Example :
procedure NEWWORKSHEET (pos:i; wsname:s);

pos :

wsname :

Example :
procedure DELWORKSHEET (/wsnr:i; wsname:s;);

wsnr :

wsname :

Example :
procedure IMPXLIMAGE (file:s; /il,it,io:r);

file :

il :

it :

io :

Example :

Mirakon - Referenz R11 / 5.17.5 Excel-Interface 120

procedure XLSAVEAS (file:s);

file :

procedure COPYWORKSHEET (pos:i) ;

pos :

Example :
procedure MOVEWORKSHEET (pos:i) ;

pos :

Example :
procedure PROTECTWORKSHEET (pwd:s);

Example :
procedure READCLIPTAB (var tab:l);

tab :

Example :
function function COUNTWS:i;

Mirakon - Referenz R11 / 5.17.5 Excel-Interface 121

5.17.6 MS-Project-Interface

Example : / Create a Project file

openmsproj('c:\proj.mpp');
setprojsettings(stg=1,prior=2,hpd=8,hpw=40,dpm=20,s tart=now);
if exprojcal('RESCAL')=0:
 begin
 newprojcal('RESCAL',basecal='STANDARD');
 defcalendar('RESCAL',wd=6,iswork=0);
 defcalendar('RESCAL',wd=7,iswork=0);
 d1:d=ds('09:00');
 d2:d=ds('12:00');
 d3:d=ds('13:00');
 d4:d=ds('18:00');
 defcalendar('RESCAL',wd=5,shiftn=1,ds=d1,de=d2);
 defcalendar('RESCAL',wd=5,shiftn=2,ds=d3,de=d4);
 end;

if exprojres('DEFRES')=0:
 begin
 newprojres('DEFRES',initials='DFR',basecal='MIRCA L',type=1,maxunits=200);
 newprojres('DEFRES2',initials='DFR',basecal='MIRC AL',type=1,maxunits=200);
 defcalendar('DEFRES',resc=1,wd=1,shiftn=1,ds=ds(' 10:00'),de=ds('12:00'));
 defcalendar('DEFRES',resc=1,wd=1,shiftn=2,ds=ds(' 14:00'),de=ds('19:00'));
 end;

if exprojtask('TASKG')=0:
 begin
 newprojtask('TASKG','50m',prior=1,type=1,effdr=1, cal='MIRCAL',ignorerc=1,miles=1);
 newprojtask('TASKG1','95m',prior=2,type=1,percw=9 0,indent=1,miles=1);
 newprojtask('TASKG2','95m',prior=2,type=1,percw=5 0,indent=-1);
 assignrestotask(90,tid='TASKG1',rid='DEFRES');
 assignrestotask(70,tid='TASKG2',rid='DEFRES2');
 reltasks(1,'10m',tids='TASKG1',tidm='TASKG2');
 end;

closemsproj(1);

procedure OPENMSPROJ(file:s)

Opens an MS. Project project file. When the given file does not exist, a new
project is created. CLOSEMSPROJ must be called at the end.

file : Project filename

procedure CLOSEMSPROJ(save:i)

Closes the active project.

save : when -1 all changes are ignored, project isn't saved;
when 0 the user is prompted to save the project;
when 1 the project is automaticaly saved;

Mirakon - Referenz R11 / 5.17.6 MS-Project-Interface 122

procedure PROJVISIBLE(vis:i)

Shows or hides the active project.

vis : 1 = show, 0 = hide

function EXPROJCAL(id:s)

Informs if a calendar exists in the active project.
Returns 1 if found and 0 if not found

id : Calendar Id.

procedure NEWPROJCAL(id:s; /basecal:s)

Inserts a new project calendar.

id : Calendar Id.

basecal : Base calendar Id.

Example : if exprojcal('MIRCAL')=0:
 newprojcal('MIRCAL',basecal='STANDARD');

procedure DEFCALENDAR(id:s; /rset,wd,d,m,y,iswork,s hiftn,resc:i; pstart,pend,ds,de:d)

Defines the calendar properties.

id : Calendar Id. or Resource Id. when RESC=1

rset : Resets the calendar.

wd : Week day (1=monday to 7=sunday)

d : Day

m : Month

y : Year

iswork : 1 if period is working period, 0 if period is non-working period

shiftn : Shift number (1 to 5)

resc : If 1 then we are referring to an resource calendar, and ID is the
resource ID.

pstart : Period start date

pend : Period end date

ds : Shift start

de : Shift end

Example : defcalendar('MIRCAL',wd=6,iswork=0);
defcalendar('MIRCAL',wd=7,iswork=0);
d1,d2,d3,d4:d;
maked(d1,0,0,0,09,00);
maked(d2,0,0,0,12,00);
maked(d3,0,0,0,13,00);
maked(d4,0,0,0,17,00);
defcalendar('MIRCAL',wd=1,shiftn=1,ds=d1,de=d2);
defcalendar('MIRCAL',wd=1,shiftn=2,ds=d3,de=d4);
defcalendar('MIRCAL',wd=2,shiftn=1,ds=d1,de=d2);
defcalendar('MIRCAL',wd=2,shiftn=2,ds=d3,de=d4);

Mirakon - Referenz R11 / 5.17.6 MS-Project-Interface 123

procedure SETPROJSETTINGS(/stg,prior,defdu,defwu:i; hpd,hpw,dpm:r; start,end:d)

Sets the active project parameters.

stg : Strategy:
 1:forward;
 2:backwards;

prior : Priority: 1 to 10 (1 Highest priority, 10 lowest priority)

defdu : Sets the default duration unit.
1=Minutes
2=Hours
3=Days
4=Weeks

defwu : Sets the default work unit.
1=Minutes
2=Hours
3=Days
4=Weeks

hpd : Sets the number of hours per day for tasks in a project.

hpw : Sets the number of hours per week for tasks in a project.

dpm : Sets the number of days per month for tasks in a project.

start : Sets the start date for a project.
Setting the start date also causes the project to be scheduled from its start date

end : Sets the finish date for a project.
Setting the finish date also causes the project to be scheduled
from its finish date.

Example : setprojsettings(stg=1,prior=2,hpd=8,hpw=40,dpm=22,s tart=now,defdu=2,defwu=2);

function EXPROJRES(id:s; /var ruid,index:a)

Informs whether the Resource ID exists in the active project.

id : Resource ID.

ruid : Returns the Resource unique identifier.

index : Returns the Resource position in the Resources Sheet.

procedure NEWPROJRES(id:s; /initials,basecal,email: s; type,pos:i; maxunits:r; var ruid:a)

Inserts a new Resource in the active project.

id : Resource ID.

initials : Resource initials

basecal : Resource Calendar Id.

email : Resource E-Mail

type : Resource type: (1=Work (default), 2=Material)

pos : Resource position in the Resources Sheet.

maxunits : Maximal resource units (in %)

ruid : When indicated, returns the resource unique identifier

Example : if exprojres('DEFRES')=0:
 begin
 newprojres('DEFRES',initials='DFR',basecal='MIRCA L',type=1,maxunits=200);
 defcalendar('DEFRES',resc=1,wd=1,shiftn=1,ds=ds(' 10:00'),de=ds('12:00'));
 defcalendar('DEFRES',resc=1,wd=1,shiftn=2,ds=ds(' 14:00'),de=ds('19:00'));

Mirakon - Referenz R11 / 5.17.6 MS-Project-Interface 124

 end;

function EXPROJTASK(id:s; /var tuid,index:a)

Informs whether the task ID exists in the active project.

id : Task Id.

tuid : Returns the Task unique identifier.

index : Returns the Task position in the tasks list.

procedure NEWPROJTASK(id:s; dur:s; /pos,prior,const rt,type,percw,indent,effdr,ignorerc,miles,est:i;
deadl,constrd,ds,de:d; cal:s; var tuid:a)

Inserts a new task in the active project.

id : Task Id.

dur : Task duration (eg.: '10 mins')

pos : Task position in the tasks list

prior : Priority: 1 to 10 (1 Highest priority, 10 lowest priority)

constrt : Constraint type:
1=As late as possible
2=As soon as possible
3=Finish no earlier than constraint Date
4=Finish no later than constraint Date
5=Must finish on constraint date
6=Must start on constraint date
7=Start no earlier than constraint date
8=Start no later than constraint date

type : Task type:
1=Fixed units
2=Fixed duration
3=Fixed work

percw : Sets the percent complete.

indent : Task indentation (X = down X levels, -X = up X levels)

effdr : 1 if the task is effort-driven

ignorerc : 1 if the resource calendar is ignored when scheduling the task

miles : 1 if the task is a milestone

est : 1 if a task's duration is an estimate

deadl : Sets a deadline for a task

constrd : Sets the constraint date.

ds : Sets the start date.

de : Sets the finish date.

cal : Sets the calendar to be used when scheduling the task

tuid : When indicated, returns the task unique identifier

Example : if exprojtask('TASKG')=0:
 newprojtask('TASKG','50 mins',prior=1,type=1,effd r=1,cal='MIRCAL',ignorerc=1,miles=1);

procedure ASSIGNRESTOTASK(nunits:r; /tid,rid:s; tui d,ruid:a)

Assign NUNITS of an Resource (rid or ruid) to a task (tid or tuid).

nunits : Number of Resource units (in %)

tid : Task Id.

Mirakon - Referenz R11 / 5.17.6 MS-Project-Interface 125

rid : Resource Id.

tuid : Task unique identifier

ruid : Resource unique identifier

Example : assignrestotask(90,tid='TASKG1',rid='DEFRES');
assignrestotask(100,tid='TASKG1',rid='DEFRES2');

procedure RELTASKS(type:i; lag:s; /tids,tidm:s; tui ds,tuidm:a)

Creates a relation between two tasks.

type : Relation type:
1=Finish to Start
2=Start to Start
3=Finish to Finish
4=Start to Finish

lag :

tids :

tidm :

tuids :

tuidm :

Example : reltasks(1,'10 mins',tids='TASKG1',tidm='TASKG2');

5.17.7 Find and scan files

procedure GETFILES (dir:s; var lst:ls);

Returns the list of the files from a folder.

dir : Folder path

lst : List that receives the file names (list of strings)

Example : files:ls;
getfiles('C:\MIRAKON\',files);

procedure GETDIRST (dir:s; var st:l; /maxl,netw,hea d:i);

Returns the sub-structure of a folder as an hierarchical list of elements.

The element type (pe^.typ) informs about the meaning of each position:
0=Drive; 1=File; 2=Folder; 10=Network drive

The element name (ename) contains the name of the Drive, File or Folder.

Each element contains the following parameters :
- p.dcreated:d; Date of creation (file or folder)
- p.dlastacc:d; Date of the last access (file or folder)
- p.dlastwrite:d; Date of the last write (file or folder)
- p.filesize:r; File size in bytes (only files)
- p.sdir:s; Folder

dir : Folder path

st : Folder structure (hierarchical list of elements).
Depending upon type of element (pe^.typ) it can contain:
- Drives (Typ=0)
- Folders (Typ=1)
- Files (Typ=2)
- Network drives (Typ=10)

Mirakon - Referenz R11 / 5.17.7 Find and scan files 126

maxl : Maximum number of hierarchic levels to be searched.
Allows you to avoid unnecessary time-consuming searches.

netw : 0=Network is not searched (default)
1=Network is search (can take very long time)

head : 0 = ST contains only the sub-structure of DIR
1 = ST contains the initial position as header element,
 and in its sub-structure, the sub-structure of DIR

Example : dir:l;
getdirst('C:\MIRAKON\',dir);
travel dir:
 begin
 if pe^.typ=2: inf('Folder='+ename);
 if pe^.typ=1: inf('File='+ename);
 end;

procedure CHOOSEPATH (dir:s; var path:s; /netw:i);

Examines the sub-structure of a folder and shows an hierarchical menu to
the user so he can select a position.

dir : Folder path

path : Path of the selected position

netw : 0=Network is not searched (default)
1=Network is search (can take very long time)

Example : docfile:s;
choosepath('C:\DOCUMENTS\',docfile);

5.18 Costs calculation

Types for cost calculation

COSTELEM Cost element. Contains the following fields:
- VC:q; calculated value
- QR:q; reference quantity (number of operations during process)
- CPU:q; costs per unit of value (e.g.: € per Hour)
- REF:s; references = ka;fepath;bkpath;oppath;rsnrs;wpnrs;atts

Variables for cost calculation

bkm q Component quantity accumulated over all hierarchic levels
only valid in connection with EDITBS, GENAP and CALCKS.

kla l List of the cost elements that belong to the selected position
in the cost editor (only valid in the KA table)

ks l List of all cost elements during CALCCOST

cpucolid s Active cost rate column in the RS table (for CALCCOST)

Situations for cost calculation

In the cost calculation and structure generator procedures CALCCOST,
GENBS, GENAP, the following situations can be used:

K0 Cost calculation phase 1: actions from product master

PAA0 Cost calculation phase 2: work process analysis

K1 Cost calculation phase 3: building of cost elements

Mirakon - Referenz R11 / 5.18 Costs calculation 127

PBA0 Work process generation phase 1: analysis of constructional structure

PAI0 Work process generation phase 2: formating work process
from product master

PAI1 Work process generation phase 3: components actions build
operations in the work process

PAI2 Work process edition

PFI0 Function structure generation out of product master actions

PFI1 Function structure edition

PFA0 Constructional structure generation phase 1: function structure analysis

PBI0 Constructional structure generation phase 2: formating structure
from product master

PBI1 Constructional structure generation phase 3: functions actions
build components in the constructional structure

PBI2 Constructional structure edition

PBA1 bis PBAn Constructive structure completion phase 1, runs 1 to n

PBC1 bis PBCn Constructive structure complete phase 2, runs 1 to n

procedure INSR (rs:n; /nr:s; need:q; o:n);

Assigns a resources master to the active operation.

rs : Number of the resource master in the RS table;

nr : Possible resource numbers for the active operation.
Allows you to assign a work place before the time calculation.

need : Work need (for planning)

o : options: Letters with the following meaning:
E: Resources structure is emptied before the new assignment;

Example : insr(D01,o=E);

procedure INSRS (rss:ln; /nr:s; need:q);

Assigns resources to the active operation. RSS contains all possible resources
numbers for the active operation. Mirakon examines then the operating conditions
for each resource in the B-column of the RS table. The first valid resource is
assigned and the search is stopped.

rss : list the possible resource masters

nr : fix work place to assign before the time planning

need : work need (for planning)

Example : insrs((B_,F_));
rsl1:ln=(A1,A2,A5,B4,B8,C3,C4,C7);
insrs(rsl1);
insrs((X),nr='1209');

procedure INSCE (ka:n; val:r; /t:s; rs:n; rsi:i; u, supl,country:s);

Inserts a cost element into the cost structure of the product.

ka : Cost category number according to the KA table

val : Cost value in the unit defined in KA table

t : Description text

rs : Resource NR from the RS table

rsi : Resource position in D.RS list

Mirakon - Referenz R11 / 5.18 Costs calculation 128

u : Cost unit if not equal to the one defined in the KA table

supl :

country :

Example : insce(TR,50);
insce(TE,p.te,);

procedure CALCCOST (var obj,opl:l; /o,cpu:n; d,n:i; var ks:l);

Calculates and generates the cost structure of an object from an operations list.
The cost structure is stored in obj.KS.

obj : Calculation object (product, order or plan)

opl : Operations list

o : options:
H: HKB-compatibel

cpu : Procedure that calculates the costing rate

d : Display mode: 1:no display

n : Number of runs (at K1,K2...) during the cost calculation;
Default=1;

ks : Cost structure (optional) if not obj.ks

Example : calccost(pr,pr.ap);
calccost(pr,pr.ap,d=1,n=2);

The conditions for CALCOST are:

- Resources list for each operation in operation.DATA.RS.

- Cost categories in the KA table on the basis module.
This table must contain the cost category unit in the U or UN column.

- Ressource masters in the RS table.

- Work unit of each resources defined in column WU of RS tables.
When this column does not exist the unit HOUR (202) is selected.

- Costs per work unit of each resource defined in the column
CCU or KS of the RS table. If the cost unit is not indicated,
the unit selected units is CHF (301).

The cost calculation consists in the execution of actions of the knowledge
base with the purpose of build all the necessary cost elements into the
cost structure.

This happens in 3 phases:

1. Phase / Situation = K0 / product master actions:

 The actions assigned to the product masters are executed.
 At this time (normally) the global variables are set:

 Example: Action of product master "Part":

 AK K0: A000\v1:=p.lg; /batch quantity becomes global in variable V1

2. Phase / Situation = PAA0 / work process analysis:

 The work process is examined from top to bottom.
 For each operation the defined actions of its master are executed.
 The purpose of these actions is to recognize the product characteristics,

Mirakon - Referenz R11 / 5.18 Costs calculation 129

 which are important for its manufacturing. This recognition consists of the
 assignment of values to global variables in the knowledge base, which can be
 saved as indicators in the product structure.

3. Phase / Situation = K1 / building of cost elements:

 The work process is examined again from top to the bottom.
 For each operation the defined actions of its master are executed.
 The purpose of these actions is to insert and evaluate cost elements into
 the cost structure of the product.
 This is done with the INSCE command (early also with INSKE and INSKEL)

 Example: AK K1: insce(TH, 120);

CALCCOST needs following tables in the basis module A000:
- KA table containing the definitions of the cost categories;
- RS table containing the resource masters.

procedure EDITCOST (fmt:n; var obj:l; /o:n; n:i);

Shows the cost structure of an object.

fmt : Cost format = row number of the KOF table

obj : Calculation object (product, order or plan)

o : options:
C = with calculate button;
H = HKB-compatible;

n : Number of runs (at K1, k2...) during cost calculation;
Default=1;

Example : editcost(OP,pr,o=C,n=2);

NR NAME ST FW KAS CODE
CG By components 2 90 ('MK/5/0','TG/5/0','HK/8/2')

OP By operations 3 90 ('MK/5/0','TG/5/0','HK/8/2')

FN By functions 1 90 ('MK/5/0','TG/5/0','HK/8/2')

ST = structure: 1=functional structure 2=constructional structure 3=work process

FW = formular width in characters

KAS = cost category columns (list of strings).
 one string = one cost category column.
 string format: cost category/column width/decimal places

CODE = commands for co-designing the formular. At situation LST.4 you
 can add headlines using the system variabel TXI.
 Example:
 AT LST.4:
 txi.1:=pr.nr+ ' ' +pr.name+ ' ' +pr.client;
 txi.2:='Lot size='+sr(pr.ls, 0);

function SUMKE (calc:i; var kel:l; kas:s; /u:n):q;

Returns the sum (quantity) of all cost elements in the list KEL that
belong to the cost category KAS.

calc : Calculation method:

Mirakon - Referenz R11 / 5.18 Costs calculation 130

1 = adds all cost element values
2 = adds all cost element values multiplied by the
 number of operations
3 = adds all cost element values multiplied by the
 appropriate cost rate
4 = adds all cost element values multiplied by the
 appropriate cost rate and number of operations

kel : List with the cost elements

kas : Cost category filter

u : Desired unit

Example : tgsum:=sumke(1,pr.ks,'TH,TN');
matsum:=sumke(2,pr.ks,'M_',u=USD);

procedure FILTERKE (crit:i; filt:s; var l1,l2:l; /o :n; nh:i);

Copies all the cost elements from the list l1 to the list l2 that
fulfill the indicated criteria/filters.

crit : Filter criteria:
1: Cost elements that belong to a functional unit.
 FILT = path of this functional unit.
2: Cost elements that belong to a component.
 FILT = path of this component.
3: Cost elements that belong to an operation.
 FILT = path of this operation.
4: Cost elements that belong to a cost category.
 FILT = filter of cost categories.
5: Cost elements that belong to a function master.
 FILT = filter of function master numbers.
6: Cost elements that belong to a component master.
 FILT = filter of component master numbers.
7: Cost elements that belong to an operation master.
 FILT = filter of operation master numbers.
8: Cost elements that belong to a cost element master.
 FILT = filter of cost element master numbers.
9: Cost elements that belong to a resource master.
 FILT = filter of resources master numbers.

filt : Filter value dependent of the filter criteria (see above).

l1 : Input list that contain the cost elements to be filtered

l2 : List that receives the filtered cost elements

o : Options:
- E: empties L2 before the filter process
- R: resets/initializes the cost calculation variables;
 necessarily if the object was replaced since the last FILTERKE.
- N: Filter with contrary meaning: all cost elements that
 fulfill the criteria are filtered (not returned).

nh : Number of hierarchic levels to be scanned based on the
indicated path.

Example : l1,l2:l;
filterke(3,'2.7',pr.ks,l1);
filterke(7,'D_',l1,l2,o=E);

Mirakon - Referenz R11 / 5.18 Costs calculation 131

procedure GENAP (/o:n; d:i);

Generates a work process based on a constructional structure.

o : Sequence of letters with the following meaning:
L = the existing structure is deleted without
 further inquiry (used for 'batch' processes).

d : Displaymode: 1:no display

How GENAP works
The generating of the work process consists of the execution of actions
in the knowledge base with the purpose to build all necessary operations
in the product structure.

This happens in three phases:

1. Phase / Situation = PBA0 / analysis of the constructive structure:

 The constructive structure is examined from the top to the bottom.
 For each component the appropriate actions of the masters are executed.
 Purpose of these actions is to recognize product characteristics, which
 are important for its manufacturing. This recognition consists of the assignment
 of values to knowledge base variables, which may be saved as indicators in
 the product structure.

 Example: Action for "flat surface":

 AT PBA0: bknd++1; /inscreases the number of turned elements

2. Phase / Situation = PAI0 / formats work process:

 The actions defined in the assigned product master are executed.
 At this time, groups of operations (the process skeleton) are usualy inserted:

 Example: Action of the product master "locomotive":

 AT PAI0: K01->ap.0; /inserts the assembly operation group

3. Phase / Situation = PAI1 / building new operations in the work process:

 The constructional structure is examined again from the top to the bottom.
 For each component the defined actions of its master are executed.
 Purpose of these actions is to insert operations and sub-operations and to
 assign resources to them. When an operation is added, Mirakon examines whether
 the master of this new operation has subsequent actions at the situation PAI1, and
 executes them (chain reaction).

 Examples:

 - actions for the constructive component master "flat surface":

 AT PAI1: D7(p.l,p.d)->popd^.ss.0;
 /inserts sub-operation Roughing under operation Turning

 - actions of the operation boring:

 AT PA _: AR01->ss.0; / inserts the sub-operation Preparation
 AT PAI_: insrs((B_, F _)); /assigns ressource B_ or F_

Mirakon - Referenz R11 / 5.18 Costs calculation 132

procedure GENBS (/o:n; nfa:i; d:i);

Generates a constructional structure based on a functional structure.

o : Sequence of letters with the following meaning:
L = the existing structure is deleted without
 further inquiry (used for 'batch' processes).

nfa : Number of runs during funtional structure analysis.
If not indicated, there is only 1 run with the condition PFA0.
If nfa=2, there are 2 runs with the conditions PFA0 and PFA1.
With nfa=3, there are 3 runs with PFA0, PFA1 and PFA2.
And so on.

d : Display mode: 1:no display

Example : genbs(o=L);

procedure COMPLBS (n:i; /o:n);

Complets (supplements) the constructional structure within N runs.
A run contains 2 phases:
- constructive structure analysis: situation PBA1 to PBAn
- constructive structure construction: situation PBC1 to PBCn

n : Sequence of letters with the following meaning:
L = the existing structure is deleted without
 further inquiry (used for 'batch' processes).

o : Display mode: 1:no display

Example : complbs(2);

procedure GENFS (/o:n; d:i);

Generates a function structure output from the product master.

o : Sequence of letters with the following meaning:
L = the existing structure is deleted without
 further inquiry (used for 'batch' processes).

d : Display mode: 1:no display

Mirakon - Referenz R11 / 5.18 Costs calculation 133

